Spaces:
No application file
No application file
File size: 16,506 Bytes
e72495e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import os
import random
import time
import re
import json
from datetime import datetime
from typing import List, Dict, Type
import pandas as pd
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field, create_model
import html2text
import tiktoken
from dotenv import load_dotenv
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from openai import OpenAI
import google.generativeai as genai
from groq import Groq
from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()
# Set up the Chrome WebDriver options
def setup_selenium():
options = Options()
# Randomly select a user agent from the imported list
user_agent = random.choice(USER_AGENTS)
options.add_argument(f"user-agent={user_agent}")
# Add other options
for option in HEADLESS_OPTIONS:
options.add_argument(option)
# Specify the path to the ChromeDriver
service = Service(r"./chromedriver-win64/chromedriver.exe")
# Initialize the WebDriver
driver = webdriver.Chrome(service=service, options=options)
return driver
def click_accept_cookies(driver):
"""
Tries to find and click on a cookie consent button. It looks for several common patterns.
"""
try:
# Wait for cookie popup to load
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.XPATH, "//button | //a | //div"))
)
# Common text variations for cookie buttons
accept_text_variations = [
"accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"
]
# Iterate through different element types and common text variations
for tag in ["button", "a", "div"]:
for text in accept_text_variations:
try:
# Create an XPath to find the button by text
element = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")
if element:
element.click()
print(f"Clicked the '{text}' button.")
return
except:
continue
print("No 'Accept Cookies' button found.")
except Exception as e:
print(f"Error finding 'Accept Cookies' button: {e}")
def fetch_html_selenium(url):
driver = setup_selenium()
try:
driver.get(url)
# Add random delays to mimic human behavior
time.sleep(1) # Adjust this to simulate time for user to read or interact
driver.maximize_window()
# Try to find and click the 'Accept Cookies' button
# click_accept_cookies(driver)
# Add more realistic actions like scrolling
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2) # Simulate time taken to scroll and read
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(1)
html = driver.page_source
return html
finally:
driver.quit()
def clean_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
# Remove headers and footers based on common HTML tags or classes
for element in soup.find_all(['header', 'footer']):
element.decompose() # Remove these tags and their content
return str(soup)
def html_to_markdown_with_readability(html_content):
cleaned_html = clean_html(html_content)
# Convert to markdown
markdown_converter = html2text.HTML2Text()
markdown_converter.ignore_links = False
markdown_content = markdown_converter.handle(cleaned_html)
return markdown_content
def save_raw_data(raw_data, timestamp, output_folder='output'):
# Ensure the output folder exists
os.makedirs(output_folder, exist_ok=True)
# Save the raw markdown data with timestamp in filename
raw_output_path = os.path.join(output_folder, f'rawData_{timestamp}.md')
with open(raw_output_path, 'w', encoding='utf-8') as f:
f.write(raw_data)
print(f"Raw data saved to {raw_output_path}")
return raw_output_path
def remove_urls_from_file(file_path):
# Regex pattern to find URLs
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
# Construct the new file name
base, ext = os.path.splitext(file_path)
new_file_path = f"{base}_cleaned{ext}"
# Read the original markdown content
with open(file_path, 'r', encoding='utf-8') as file:
markdown_content = file.read()
# Replace all found URLs with an empty string
cleaned_content = re.sub(url_pattern, '', markdown_content)
# Write the cleaned content to a new file
with open(new_file_path, 'w', encoding='utf-8') as file:
file.write(cleaned_content)
print(f"Cleaned file saved as: {new_file_path}")
return cleaned_content
def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
"""
Dynamically creates a Pydantic model based on provided fields.
field_name is a list of names of the fields to extract from the markdown.
"""
# Create field definitions using aliases for Field parameters
field_definitions = {field: (str, ...) for field in field_names}
# Dynamically create the model with all field
return create_model('DynamicListingModel', **field_definitions)
def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
"""
Create a container model that holds a list of the given listing model.
"""
return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))
def trim_to_token_limit(text, model, max_tokens=120000):
encoder = tiktoken.encoding_for_model(model)
tokens = encoder.encode(text)
if len(tokens) > max_tokens:
trimmed_text = encoder.decode(tokens[:max_tokens])
return trimmed_text
return text
def generate_system_message(listing_model: BaseModel) -> str:
"""
Dynamically generate a system message based on the fields in the provided listing model.
"""
# Use the model_json_schema() method to introspect the Pydantic model
schema_info = listing_model.model_json_schema()
# Extract field descriptions from the schema
field_descriptions = []
for field_name, field_info in schema_info["properties"].items():
# Get the field type from the schema info
field_type = field_info["type"]
field_descriptions.append(f'"{field_name}": "{field_type}"')
# Create the JSON schema structure for the listings
schema_structure = ",\n".join(field_descriptions)
# Generate the system message dynamically
system_message = f"""
You are an intelligent text extraction and conversion assistant. Your task is to extract structured information
from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text,
with no additional commentary, explanations, or extraneous information.
You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
Please ensure the output strictly follows this schema:
{{
"listings": [
{{
{schema_structure}
}}
]
}} """
return system_message
def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
token_counts = {}
if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
# Use OpenAI API
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
completion = client.beta.chat.completions.parse(
model=selected_model,
messages=[
{"role": "system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": USER_MESSAGE + data},
],
response_format=DynamicListingsContainer
)
# Calculate tokens using tiktoken
encoder = tiktoken.encoding_for_model(selected_model)
input_token_count = len(encoder.encode(USER_MESSAGE + data))
output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
token_counts = {
"input_tokens": input_token_count,
"output_tokens": output_token_count
}
return completion.choices[0].message.parsed, token_counts
elif selected_model == "gemini-1.5-flash":
# Use Google Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel('gemini-1.5-flash',
generation_config={
"response_mime_type": "application/json",
"response_schema": DynamicListingsContainer
})
prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
# Count input tokens using Gemini's method
input_tokens = model.count_tokens(prompt)
completion = model.generate_content(prompt)
# Extract token counts from usage_metadata
usage_metadata = completion.usage_metadata
token_counts = {
"input_tokens": usage_metadata.prompt_token_count,
"output_tokens": usage_metadata.candidates_token_count
}
return completion.text, token_counts
elif selected_model == "Llama3.1 8B":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
completion = client.chat.completions.create(
model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
messages=[
{"role": "system", "content": sys_message},
{"role": "user", "content": USER_MESSAGE + data}
],
temperature=0.7,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
print(response_content)
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# Extract token usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
elif selected_model== "Groq Llama3.1 70b":
# Dynamically generate the system message based on the schema
sys_message = generate_system_message(DynamicListingModel)
# print(SYSTEM_MESSAGE)
# Point to the local server
client = Groq(api_key=os.environ.get("GROQ_API_KEY"),)
completion = client.chat.completions.create(
messages=[
{"role": "system","content": sys_message},
{"role": "user","content": USER_MESSAGE + data}
],
model=GROQ_LLAMA_MODEL_FULLNAME,
)
# Extract the content from the response
response_content = completion.choices[0].message.content
# Convert the content from JSON string to a Python dictionary
parsed_response = json.loads(response_content)
# completion.usage
token_counts = {
"input_tokens": completion.usage.prompt_tokens,
"output_tokens": completion.usage.completion_tokens
}
return parsed_response, token_counts
else:
raise ValueError(f"Unsupported model: {selected_model}")
def save_formatted_data(formatted_data, timestamp, output_folder='output'):
# Ensure the output folder exists
os.makedirs(output_folder, exist_ok=True)
# Parse the formatted data if it's a JSON string (from Gemini API)
if isinstance(formatted_data, str):
try:
formatted_data_dict = json.loads(formatted_data)
except json.JSONDecodeError:
raise ValueError("The provided formatted data is a string but not valid JSON.")
else:
# Handle data from OpenAI or other sources
formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data
# Save the formatted data as JSON with timestamp in filename
json_output_path = os.path.join(output_folder, f'sorted_data_{timestamp}.json')
with open(json_output_path, 'w', encoding='utf-8') as f:
json.dump(formatted_data_dict, f, indent=4)
print(f"Formatted data saved to JSON at {json_output_path}")
# Prepare data for DataFrame
if isinstance(formatted_data_dict, dict):
# If the data is a dictionary containing lists, assume these lists are records
data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
elif isinstance(formatted_data_dict, list):
data_for_df = formatted_data_dict
else:
raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")
# Create DataFrame
try:
df = pd.DataFrame(data_for_df)
print("DataFrame created successfully.")
# Save the DataFrame to an Excel file
excel_output_path = os.path.join(output_folder, f'sorted_data_{timestamp}.xlsx')
df.to_excel(excel_output_path, index=False)
print(f"Formatted data saved to Excel at {excel_output_path}")
return df
except Exception as e:
print(f"Error creating DataFrame or saving Excel: {str(e)}")
return None
def calculate_price(token_counts, model):
input_token_count = token_counts.get("input_tokens", 0)
output_token_count = token_counts.get("output_tokens", 0)
# Calculate the costs
input_cost = input_token_count * PRICING[model]["input"]
output_cost = output_token_count * PRICING[model]["output"]
total_cost = input_cost + output_cost
return input_token_count, output_token_count, total_cost
if __name__ == "__main__":
url = 'https://webscraper.io/test-sites/e-commerce/static'
fields=['Name of item', 'Price']
try:
# # Generate timestamp
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
# Scrape data
raw_html = fetch_html_selenium(url)
markdown = html_to_markdown_with_readability(raw_html)
# Save raw data
save_raw_data(markdown, timestamp)
# Create the dynamic listing model
DynamicListingModel = create_dynamic_listing_model(fields)
# Create the container model that holds a list of the dynamic listing models
DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
# Format data
formatted_data, token_counts = format_data(markdown, DynamicListingsContainer,DynamicListingModel,"Groq Llama3.1 70b") # Use markdown, not raw_html
print(formatted_data)
# Save formatted data
save_formatted_data(formatted_data, timestamp)
# Convert formatted_data back to text for token counting
formatted_data_text = json.dumps(formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data)
# Automatically calculate the token usage and cost for all input and output
input_tokens, output_tokens, total_cost = calculate_price(token_counts, "Groq Llama3.1 70b")
print(f"Input token count: {input_tokens}")
print(f"Output token count: {output_tokens}")
print(f"Estimated total cost: ${total_cost:.4f}")
except Exception as e:
print(f"An error occurred: {e}") |