File size: 16,506 Bytes
e72495e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import random
import time
import re
import json
from datetime import datetime
from typing import List, Dict, Type

import pandas as pd
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field, create_model
import html2text
import tiktoken

from dotenv import load_dotenv
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC


from openai import OpenAI
import google.generativeai as genai
from groq import Groq


from assets import USER_AGENTS,PRICING,HEADLESS_OPTIONS,SYSTEM_MESSAGE,USER_MESSAGE,LLAMA_MODEL_FULLNAME,GROQ_LLAMA_MODEL_FULLNAME
load_dotenv()

# Set up the Chrome WebDriver options

def setup_selenium():
    options = Options()

    # Randomly select a user agent from the imported list
    user_agent = random.choice(USER_AGENTS)
    options.add_argument(f"user-agent={user_agent}")

    # Add other options
    for option in HEADLESS_OPTIONS:
        options.add_argument(option)

    # Specify the path to the ChromeDriver
    service = Service(r"./chromedriver-win64/chromedriver.exe")  

    # Initialize the WebDriver
    driver = webdriver.Chrome(service=service, options=options)
    return driver

def click_accept_cookies(driver):
    """
    Tries to find and click on a cookie consent button. It looks for several common patterns.
    """
    try:
        # Wait for cookie popup to load
        WebDriverWait(driver, 10).until(
            EC.presence_of_element_located((By.XPATH, "//button | //a | //div"))
        )
        
        # Common text variations for cookie buttons
        accept_text_variations = [
            "accept", "agree", "allow", "consent", "continue", "ok", "I agree", "got it"
        ]
        
        # Iterate through different element types and common text variations
        for tag in ["button", "a", "div"]:
            for text in accept_text_variations:
                try:
                    # Create an XPath to find the button by text
                    element = driver.find_element(By.XPATH, f"//{tag}[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), '{text}')]")
                    if element:
                        element.click()
                        print(f"Clicked the '{text}' button.")
                        return
                except:
                    continue

        print("No 'Accept Cookies' button found.")
    
    except Exception as e:
        print(f"Error finding 'Accept Cookies' button: {e}")

def fetch_html_selenium(url):
    driver = setup_selenium()
    try:
        driver.get(url)
        
        # Add random delays to mimic human behavior
        time.sleep(1)  # Adjust this to simulate time for user to read or interact
        driver.maximize_window()
        

        # Try to find and click the 'Accept Cookies' button
        # click_accept_cookies(driver)

        # Add more realistic actions like scrolling
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(2)  # Simulate time taken to scroll and read
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(1)
        html = driver.page_source
        return html
    finally:
        driver.quit()

def clean_html(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    
    # Remove headers and footers based on common HTML tags or classes
    for element in soup.find_all(['header', 'footer']):
        element.decompose()  # Remove these tags and their content

    return str(soup)


def html_to_markdown_with_readability(html_content):

    
    cleaned_html = clean_html(html_content)  
    
    # Convert to markdown
    markdown_converter = html2text.HTML2Text()
    markdown_converter.ignore_links = False
    markdown_content = markdown_converter.handle(cleaned_html)
    
    return markdown_content


    
def save_raw_data(raw_data, timestamp, output_folder='output'):
    # Ensure the output folder exists
    os.makedirs(output_folder, exist_ok=True)
    
    # Save the raw markdown data with timestamp in filename
    raw_output_path = os.path.join(output_folder, f'rawData_{timestamp}.md')
    with open(raw_output_path, 'w', encoding='utf-8') as f:
        f.write(raw_data)
    print(f"Raw data saved to {raw_output_path}")
    return raw_output_path


def remove_urls_from_file(file_path):
    # Regex pattern to find URLs
    url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'

    # Construct the new file name
    base, ext = os.path.splitext(file_path)
    new_file_path = f"{base}_cleaned{ext}"

    # Read the original markdown content
    with open(file_path, 'r', encoding='utf-8') as file:
        markdown_content = file.read()

    # Replace all found URLs with an empty string
    cleaned_content = re.sub(url_pattern, '', markdown_content)

    # Write the cleaned content to a new file
    with open(new_file_path, 'w', encoding='utf-8') as file:
        file.write(cleaned_content)
    print(f"Cleaned file saved as: {new_file_path}")
    return cleaned_content


def create_dynamic_listing_model(field_names: List[str]) -> Type[BaseModel]:
    """
    Dynamically creates a Pydantic model based on provided fields.
    field_name is a list of names of the fields to extract from the markdown.
    """
    # Create field definitions using aliases for Field parameters
    field_definitions = {field: (str, ...) for field in field_names}
    # Dynamically create the model with all field
    return create_model('DynamicListingModel', **field_definitions)


def create_listings_container_model(listing_model: Type[BaseModel]) -> Type[BaseModel]:
    """
    Create a container model that holds a list of the given listing model.
    """
    return create_model('DynamicListingsContainer', listings=(List[listing_model], ...))




def trim_to_token_limit(text, model, max_tokens=120000):
    encoder = tiktoken.encoding_for_model(model)
    tokens = encoder.encode(text)
    if len(tokens) > max_tokens:
        trimmed_text = encoder.decode(tokens[:max_tokens])
        return trimmed_text
    return text

def generate_system_message(listing_model: BaseModel) -> str:
    """
    Dynamically generate a system message based on the fields in the provided listing model.
    """
    # Use the model_json_schema() method to introspect the Pydantic model
    schema_info = listing_model.model_json_schema()

    # Extract field descriptions from the schema
    field_descriptions = []
    for field_name, field_info in schema_info["properties"].items():
        # Get the field type from the schema info
        field_type = field_info["type"]
        field_descriptions.append(f'"{field_name}": "{field_type}"')

    # Create the JSON schema structure for the listings
    schema_structure = ",\n".join(field_descriptions)

    # Generate the system message dynamically
    system_message = f"""
    You are an intelligent text extraction and conversion assistant. Your task is to extract structured information 
                        from the given text and convert it into a pure JSON format. The JSON should contain only the structured data extracted from the text, 
                        with no additional commentary, explanations, or extraneous information. 
                        You could encounter cases where you can't find the data of the fields you have to extract or the data will be in a foreign language.
                        Please process the following text and provide the output in pure JSON format with no words before or after the JSON:
    Please ensure the output strictly follows this schema:

    {{
        "listings": [
            {{
                {schema_structure}
            }}
        ]
    }} """

    return system_message



def format_data(data, DynamicListingsContainer, DynamicListingModel, selected_model):
    token_counts = {}
    
    if selected_model in ["gpt-4o-mini", "gpt-4o-2024-08-06"]:
        # Use OpenAI API
        client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
        completion = client.beta.chat.completions.parse(
            model=selected_model,
            messages=[
                {"role": "system", "content": SYSTEM_MESSAGE},
                {"role": "user", "content": USER_MESSAGE + data},
            ],
            response_format=DynamicListingsContainer
        )
        # Calculate tokens using tiktoken
        encoder = tiktoken.encoding_for_model(selected_model)
        input_token_count = len(encoder.encode(USER_MESSAGE + data))
        output_token_count = len(encoder.encode(json.dumps(completion.choices[0].message.parsed.dict())))
        token_counts = {
            "input_tokens": input_token_count,
            "output_tokens": output_token_count
        }
        return completion.choices[0].message.parsed, token_counts

    elif selected_model == "gemini-1.5-flash":
        # Use Google Gemini API
        genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
        model = genai.GenerativeModel('gemini-1.5-flash',
                generation_config={
                    "response_mime_type": "application/json",
                    "response_schema": DynamicListingsContainer
                })
        prompt = SYSTEM_MESSAGE + "\n" + USER_MESSAGE + data
        # Count input tokens using Gemini's method
        input_tokens = model.count_tokens(prompt)
        completion = model.generate_content(prompt)
        # Extract token counts from usage_metadata
        usage_metadata = completion.usage_metadata
        token_counts = {
            "input_tokens": usage_metadata.prompt_token_count,
            "output_tokens": usage_metadata.candidates_token_count
        }
        return completion.text, token_counts
    
    elif selected_model == "Llama3.1 8B":

        # Dynamically generate the system message based on the schema
        sys_message = generate_system_message(DynamicListingModel)
        # print(SYSTEM_MESSAGE)
        # Point to the local server
        client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")

        completion = client.chat.completions.create(
            model=LLAMA_MODEL_FULLNAME, #change this if needed (use a better model)
            messages=[
                {"role": "system", "content": sys_message},
                {"role": "user", "content": USER_MESSAGE + data}
            ],
            temperature=0.7,
            
        )

        # Extract the content from the response
        response_content = completion.choices[0].message.content
        print(response_content)
        # Convert the content from JSON string to a Python dictionary
        parsed_response = json.loads(response_content)
        
        # Extract token usage
        token_counts = {
            "input_tokens": completion.usage.prompt_tokens,
            "output_tokens": completion.usage.completion_tokens
        }

        return parsed_response, token_counts
    elif selected_model== "Groq Llama3.1 70b":
        
        # Dynamically generate the system message based on the schema
        sys_message = generate_system_message(DynamicListingModel)
        # print(SYSTEM_MESSAGE)
        # Point to the local server
        client = Groq(api_key=os.environ.get("GROQ_API_KEY"),)

        completion = client.chat.completions.create(
        messages=[
            {"role": "system","content": sys_message},
            {"role": "user","content": USER_MESSAGE + data}
        ],
        model=GROQ_LLAMA_MODEL_FULLNAME,
    )

        # Extract the content from the response
        response_content = completion.choices[0].message.content
        
        # Convert the content from JSON string to a Python dictionary
        parsed_response = json.loads(response_content)
        
        # completion.usage
        token_counts = {
            "input_tokens": completion.usage.prompt_tokens,
            "output_tokens": completion.usage.completion_tokens
        }

        return parsed_response, token_counts
    else:
        raise ValueError(f"Unsupported model: {selected_model}")



def save_formatted_data(formatted_data, timestamp, output_folder='output'):
    # Ensure the output folder exists
    os.makedirs(output_folder, exist_ok=True)
    
    # Parse the formatted data if it's a JSON string (from Gemini API)
    if isinstance(formatted_data, str):
        try:
            formatted_data_dict = json.loads(formatted_data)
        except json.JSONDecodeError:
            raise ValueError("The provided formatted data is a string but not valid JSON.")
    else:
        # Handle data from OpenAI or other sources
        formatted_data_dict = formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data

    # Save the formatted data as JSON with timestamp in filename
    json_output_path = os.path.join(output_folder, f'sorted_data_{timestamp}.json')
    with open(json_output_path, 'w', encoding='utf-8') as f:
        json.dump(formatted_data_dict, f, indent=4)
    print(f"Formatted data saved to JSON at {json_output_path}")

    # Prepare data for DataFrame
    if isinstance(formatted_data_dict, dict):
        # If the data is a dictionary containing lists, assume these lists are records
        data_for_df = next(iter(formatted_data_dict.values())) if len(formatted_data_dict) == 1 else formatted_data_dict
    elif isinstance(formatted_data_dict, list):
        data_for_df = formatted_data_dict
    else:
        raise ValueError("Formatted data is neither a dictionary nor a list, cannot convert to DataFrame")

    # Create DataFrame
    try:
        df = pd.DataFrame(data_for_df)
        print("DataFrame created successfully.")

        # Save the DataFrame to an Excel file
        excel_output_path = os.path.join(output_folder, f'sorted_data_{timestamp}.xlsx')
        df.to_excel(excel_output_path, index=False)
        print(f"Formatted data saved to Excel at {excel_output_path}")
        
        return df
    except Exception as e:
        print(f"Error creating DataFrame or saving Excel: {str(e)}")
        return None

def calculate_price(token_counts, model):
    input_token_count = token_counts.get("input_tokens", 0)
    output_token_count = token_counts.get("output_tokens", 0)
    
    # Calculate the costs
    input_cost = input_token_count * PRICING[model]["input"]
    output_cost = output_token_count * PRICING[model]["output"]
    total_cost = input_cost + output_cost
    
    return input_token_count, output_token_count, total_cost





if __name__ == "__main__":
    url = 'https://webscraper.io/test-sites/e-commerce/static'
    fields=['Name of item', 'Price']

    try:
        # # Generate timestamp
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        
        # Scrape data
        raw_html = fetch_html_selenium(url)
    
        markdown = html_to_markdown_with_readability(raw_html)
        
        # Save raw data
        save_raw_data(markdown, timestamp)

        # Create the dynamic listing model
        DynamicListingModel = create_dynamic_listing_model(fields)

        # Create the container model that holds a list of the dynamic listing models
        DynamicListingsContainer = create_listings_container_model(DynamicListingModel)
        
        # Format data
        formatted_data, token_counts = format_data(markdown, DynamicListingsContainer,DynamicListingModel,"Groq Llama3.1 70b")  # Use markdown, not raw_html
        print(formatted_data)
        # Save formatted data
        save_formatted_data(formatted_data, timestamp)

        # Convert formatted_data back to text for token counting
        formatted_data_text = json.dumps(formatted_data.dict() if hasattr(formatted_data, 'dict') else formatted_data) 
        
        
        # Automatically calculate the token usage and cost for all input and output
        input_tokens, output_tokens, total_cost = calculate_price(token_counts, "Groq Llama3.1 70b")
        print(f"Input token count: {input_tokens}")
        print(f"Output token count: {output_tokens}")
        print(f"Estimated total cost: ${total_cost:.4f}")

    except Exception as e:
        print(f"An error occurred: {e}")