Spaces:
No application file
No application file
75356943dbb52724d5d717af246a7f8e8b5e244b38e1c1ae792e56c4f06994b7
Browse files- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/time_embedding.py +75 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/unet.py +226 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/util.py +271 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/__pycache__/utils.cpython-38.pyc +0 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__init__.py +3 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/__init__.cpython-38.pyc +0 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/codebook.cpython-38.pyc +0 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/lpips.cpython-38.pyc +0 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/vqgan.cpython-38.pyc +0 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/cache/vgg.pth +3 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/codebook.py +109 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/lpips.py +181 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/vqgan.py +561 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/utils.py +177 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/utils.py +465 -0
- Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/utils_.py +298 -0
- Generation_Pipeline_filter_all/syn_pancreas/healthy_pancreas_1k.txt +774 -0
- Generation_Pipeline_filter_all/syn_pancreas/requirements.txt +94 -0
- Generation_Pipeline_filter_all/val_set/bodymap_colon.txt +25 -0
- Generation_Pipeline_filter_all/val_set/bodymap_kidney.txt +24 -0
- Generation_Pipeline_filter_all/val_set/bodymap_liver.txt +25 -0
- Generation_Pipeline_filter_all/val_set/bodymap_pancreas.txt +24 -0
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/time_embedding.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from monai.networks.layers.utils import get_act_layer
|
6 |
+
|
7 |
+
|
8 |
+
class SinusoidalPosEmb(nn.Module):
|
9 |
+
def __init__(self, emb_dim=16, downscale_freq_shift=1, max_period=10000, flip_sin_to_cos=False):
|
10 |
+
super().__init__()
|
11 |
+
self.emb_dim = emb_dim
|
12 |
+
self.downscale_freq_shift = downscale_freq_shift
|
13 |
+
self.max_period = max_period
|
14 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
device = x.device
|
18 |
+
half_dim = self.emb_dim // 2
|
19 |
+
emb = math.log(self.max_period) / \
|
20 |
+
(half_dim - self.downscale_freq_shift)
|
21 |
+
emb = torch.exp(-emb*torch.arange(half_dim, device=device))
|
22 |
+
emb = x[:, None] * emb[None, :]
|
23 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
24 |
+
|
25 |
+
if self.flip_sin_to_cos:
|
26 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
27 |
+
|
28 |
+
if self.emb_dim % 2 == 1:
|
29 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
class LearnedSinusoidalPosEmb(nn.Module):
|
34 |
+
""" following @crowsonkb 's lead with learned sinusoidal pos emb """
|
35 |
+
""" https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
|
36 |
+
|
37 |
+
def __init__(self, emb_dim):
|
38 |
+
super().__init__()
|
39 |
+
self.emb_dim = emb_dim
|
40 |
+
half_dim = emb_dim // 2
|
41 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = x[:, None]
|
45 |
+
freqs = x * self.weights[None, :] * 2 * math.pi
|
46 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
47 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
48 |
+
if self.emb_dim % 2 == 1:
|
49 |
+
fouriered = torch.nn.functional.pad(fouriered, (0, 1, 0, 0))
|
50 |
+
return fouriered
|
51 |
+
|
52 |
+
|
53 |
+
class TimeEmbbeding(nn.Module):
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
emb_dim=64,
|
57 |
+
pos_embedder=SinusoidalPosEmb,
|
58 |
+
pos_embedder_kwargs={},
|
59 |
+
act_name=("SWISH", {}) # Swish = SiLU
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
self.emb_dim = emb_dim
|
63 |
+
self.pos_emb_dim = pos_embedder_kwargs.get('emb_dim', emb_dim//4)
|
64 |
+
pos_embedder_kwargs['emb_dim'] = self.pos_emb_dim
|
65 |
+
self.pos_embedder = pos_embedder(**pos_embedder_kwargs)
|
66 |
+
|
67 |
+
self.time_emb = nn.Sequential(
|
68 |
+
self.pos_embedder,
|
69 |
+
nn.Linear(self.pos_emb_dim, self.emb_dim),
|
70 |
+
get_act_layer(act_name),
|
71 |
+
nn.Linear(self.emb_dim, self.emb_dim)
|
72 |
+
)
|
73 |
+
|
74 |
+
def forward(self, time):
|
75 |
+
return self.time_emb(time)
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/unet.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ddpm.time_embedding import TimeEmbbeding
|
2 |
+
|
3 |
+
import monai.networks.nets as nets
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from monai.networks.blocks import UnetBasicBlock, UnetResBlock, UnetUpBlock, Convolution, UnetOutBlock
|
9 |
+
from monai.networks.layers.utils import get_act_layer
|
10 |
+
|
11 |
+
|
12 |
+
class DownBlock(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
spatial_dims,
|
16 |
+
in_ch,
|
17 |
+
out_ch,
|
18 |
+
time_emb_dim,
|
19 |
+
cond_emb_dim,
|
20 |
+
act_name=("swish", {}),
|
21 |
+
**kwargs):
|
22 |
+
super(DownBlock, self).__init__()
|
23 |
+
self.loca_time_embedder = nn.Sequential(
|
24 |
+
get_act_layer(name=act_name),
|
25 |
+
nn.Linear(time_emb_dim, in_ch) # in_ch * 2
|
26 |
+
)
|
27 |
+
if cond_emb_dim is not None:
|
28 |
+
self.loca_cond_embedder = nn.Sequential(
|
29 |
+
get_act_layer(name=act_name),
|
30 |
+
nn.Linear(cond_emb_dim, in_ch),
|
31 |
+
)
|
32 |
+
self.down_op = UnetBasicBlock(
|
33 |
+
spatial_dims, in_ch, out_ch, act_name=act_name, **kwargs)
|
34 |
+
|
35 |
+
def forward(self, x, time_emb, cond_emb):
|
36 |
+
b, c, *_ = x.shape
|
37 |
+
sp_dim = x.ndim-2
|
38 |
+
|
39 |
+
# ------------ Time ----------
|
40 |
+
time_emb = self.loca_time_embedder(time_emb)
|
41 |
+
time_emb = time_emb.reshape(b, c, *((1,)*sp_dim))
|
42 |
+
# scale, shift = time_emb.chunk(2, dim = 1)
|
43 |
+
|
44 |
+
# ------------ Combine ------------
|
45 |
+
# x = x * (scale + 1) + shift
|
46 |
+
x = x + time_emb
|
47 |
+
|
48 |
+
# ----------- Condition ------------
|
49 |
+
if cond_emb is not None:
|
50 |
+
cond_emb = self.loca_cond_embedder(cond_emb)
|
51 |
+
cond_emb = cond_emb.reshape(b, c, *((1,)*sp_dim))
|
52 |
+
x = x + cond_emb
|
53 |
+
|
54 |
+
# ----------- Image ---------
|
55 |
+
y = self.down_op(x)
|
56 |
+
return y
|
57 |
+
|
58 |
+
|
59 |
+
class UpBlock(nn.Module):
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
spatial_dims,
|
63 |
+
skip_ch,
|
64 |
+
enc_ch,
|
65 |
+
time_emb_dim,
|
66 |
+
cond_emb_dim,
|
67 |
+
act_name=("swish", {}),
|
68 |
+
**kwargs):
|
69 |
+
super(UpBlock, self).__init__()
|
70 |
+
self.up_op = UnetUpBlock(spatial_dims, enc_ch,
|
71 |
+
skip_ch, act_name=act_name, **kwargs)
|
72 |
+
self.loca_time_embedder = nn.Sequential(
|
73 |
+
get_act_layer(name=act_name),
|
74 |
+
nn.Linear(time_emb_dim, skip_ch * 2),
|
75 |
+
)
|
76 |
+
if cond_emb_dim is not None:
|
77 |
+
self.loca_cond_embedder = nn.Sequential(
|
78 |
+
get_act_layer(name=act_name),
|
79 |
+
nn.Linear(cond_emb_dim, skip_ch * 2),
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, x_skip, x_enc, time_emb, cond_emb):
|
83 |
+
b, c, *_ = x_enc.shape
|
84 |
+
sp_dim = x_enc.ndim-2
|
85 |
+
|
86 |
+
# ----------- Time --------------
|
87 |
+
time_emb = self.loca_time_embedder(time_emb)
|
88 |
+
time_emb = time_emb.reshape(b, c, *((1,)*sp_dim))
|
89 |
+
# scale, shift = time_emb.chunk(2, dim = 1)
|
90 |
+
|
91 |
+
# -------- Combine -------------
|
92 |
+
# y = x * (scale + 1) + shift
|
93 |
+
x_enc = x_enc + time_emb
|
94 |
+
|
95 |
+
# ----------- Condition ------------
|
96 |
+
if cond_emb is not None:
|
97 |
+
cond_emb = self.loca_cond_embedder(cond_emb)
|
98 |
+
cond_emb = cond_emb.reshape(b, c, *((1,)*sp_dim))
|
99 |
+
x_enc = x_enc + cond_emb
|
100 |
+
|
101 |
+
# ----------- Image -------------
|
102 |
+
y = self.up_op(x_enc, x_skip)
|
103 |
+
|
104 |
+
# -------- Combine -------------
|
105 |
+
# y = y * (scale + 1) + shift
|
106 |
+
|
107 |
+
return y
|
108 |
+
|
109 |
+
|
110 |
+
class UNet(nn.Module):
|
111 |
+
|
112 |
+
def __init__(self,
|
113 |
+
in_ch=1,
|
114 |
+
out_ch=1,
|
115 |
+
spatial_dims=3,
|
116 |
+
hid_chs=[32, 64, 128, 256, 512],
|
117 |
+
kernel_sizes=[(1, 3, 3), (1, 3, 3), (1, 3, 3), 3, 3],
|
118 |
+
strides=[1, (1, 2, 2), (1, 2, 2), 2, 2],
|
119 |
+
upsample_kernel_sizes=None,
|
120 |
+
act_name=("SWISH", {}),
|
121 |
+
norm_name=("INSTANCE", {"affine": True}),
|
122 |
+
time_embedder=TimeEmbbeding,
|
123 |
+
time_embedder_kwargs={},
|
124 |
+
cond_embedder=None,
|
125 |
+
cond_embedder_kwargs={},
|
126 |
+
# True = all but last layer, 0/False=disable, 1=only first layer, ...
|
127 |
+
deep_ver_supervision=True,
|
128 |
+
estimate_variance=False,
|
129 |
+
use_self_conditioning=False,
|
130 |
+
**kwargs
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
if upsample_kernel_sizes is None:
|
134 |
+
upsample_kernel_sizes = strides[1:]
|
135 |
+
|
136 |
+
# ------------- Time-Embedder-----------
|
137 |
+
self.time_embedder = time_embedder(**time_embedder_kwargs)
|
138 |
+
|
139 |
+
# ------------- Condition-Embedder-----------
|
140 |
+
if cond_embedder is not None:
|
141 |
+
self.cond_embedder = cond_embedder(**cond_embedder_kwargs)
|
142 |
+
cond_emb_dim = self.cond_embedder.emb_dim
|
143 |
+
else:
|
144 |
+
self.cond_embedder = None
|
145 |
+
cond_emb_dim = None
|
146 |
+
|
147 |
+
# ----------- In-Convolution ------------
|
148 |
+
in_ch = in_ch*2 if use_self_conditioning else in_ch
|
149 |
+
self.inc = UnetBasicBlock(spatial_dims, in_ch, hid_chs[0], kernel_size=kernel_sizes[0], stride=strides[0],
|
150 |
+
act_name=act_name, norm_name=norm_name, **kwargs)
|
151 |
+
|
152 |
+
# ----------- Encoder ----------------
|
153 |
+
self.encoders = nn.ModuleList([
|
154 |
+
DownBlock(spatial_dims, hid_chs[i-1], hid_chs[i], time_emb_dim=self.time_embedder.emb_dim,
|
155 |
+
cond_emb_dim=cond_emb_dim, kernel_size=kernel_sizes[
|
156 |
+
i], stride=strides[i], act_name=act_name,
|
157 |
+
norm_name=norm_name, **kwargs)
|
158 |
+
for i in range(1, len(strides))
|
159 |
+
])
|
160 |
+
|
161 |
+
# ------------ Decoder ----------
|
162 |
+
self.decoders = nn.ModuleList([
|
163 |
+
UpBlock(spatial_dims, hid_chs[i], hid_chs[i+1], time_emb_dim=self.time_embedder.emb_dim,
|
164 |
+
cond_emb_dim=cond_emb_dim, kernel_size=kernel_sizes[i +
|
165 |
+
1], stride=strides[i+1], act_name=act_name,
|
166 |
+
norm_name=norm_name, upsample_kernel_size=upsample_kernel_sizes[i], **kwargs)
|
167 |
+
for i in range(len(strides)-1)
|
168 |
+
])
|
169 |
+
|
170 |
+
# --------------- Out-Convolution ----------------
|
171 |
+
out_ch_hor = out_ch*2 if estimate_variance else out_ch
|
172 |
+
self.outc = UnetOutBlock(
|
173 |
+
spatial_dims, hid_chs[0], out_ch_hor, dropout=None)
|
174 |
+
if isinstance(deep_ver_supervision, bool):
|
175 |
+
deep_ver_supervision = len(
|
176 |
+
strides)-2 if deep_ver_supervision else 0
|
177 |
+
self.outc_ver = nn.ModuleList([
|
178 |
+
UnetOutBlock(spatial_dims, hid_chs[i], out_ch, dropout=None)
|
179 |
+
for i in range(1, deep_ver_supervision+1)
|
180 |
+
])
|
181 |
+
|
182 |
+
def forward(self, x_t, t, cond=None, self_cond=None, **kwargs):
|
183 |
+
condition = cond
|
184 |
+
# x_t [B, C, (D), H, W]
|
185 |
+
# t [B,]
|
186 |
+
|
187 |
+
# -------- In-Convolution --------------
|
188 |
+
x = [None for _ in range(len(self.encoders)+1)]
|
189 |
+
x_t = torch.cat([x_t, self_cond],
|
190 |
+
dim=1) if self_cond is not None else x_t
|
191 |
+
x[0] = self.inc(x_t)
|
192 |
+
|
193 |
+
# -------- Time Embedding (Gloabl) -----------
|
194 |
+
time_emb = self.time_embedder(t) # [B, C]
|
195 |
+
|
196 |
+
# -------- Condition Embedding (Gloabl) -----------
|
197 |
+
if (condition is None) or (self.cond_embedder is None):
|
198 |
+
cond_emb = None
|
199 |
+
else:
|
200 |
+
cond_emb = self.cond_embedder(condition) # [B, C]
|
201 |
+
|
202 |
+
# --------- Encoder --------------
|
203 |
+
for i in range(len(self.encoders)):
|
204 |
+
x[i+1] = self.encoders[i](x[i], time_emb, cond_emb)
|
205 |
+
|
206 |
+
# -------- Decoder -----------
|
207 |
+
for i in range(len(self.decoders), 0, -1):
|
208 |
+
x[i-1] = self.decoders[i-1](x[i-1], x[i], time_emb, cond_emb)
|
209 |
+
|
210 |
+
# ---------Out-Convolution ------------
|
211 |
+
y_hor = self.outc(x[0])
|
212 |
+
y_ver = [outc_ver_i(x[i+1])
|
213 |
+
for i, outc_ver_i in enumerate(self.outc_ver)]
|
214 |
+
|
215 |
+
return y_hor # , y_ver
|
216 |
+
|
217 |
+
def forward_with_cond_scale(self, *args, cond_scale=0., **kwargs):
|
218 |
+
return self.forward(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
if __name__ == '__main__':
|
222 |
+
model = UNet(in_ch=3)
|
223 |
+
input = torch.randn((1, 3, 16, 128, 128))
|
224 |
+
time = torch.randn((1,))
|
225 |
+
out_hor, out_ver = model(input, time)
|
226 |
+
print(out_hor[0].shape)
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/ddpm/util.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
# from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
|
21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
+
if schedule == "linear":
|
23 |
+
betas = (
|
24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
+
)
|
26 |
+
|
27 |
+
elif schedule == "cosine":
|
28 |
+
timesteps = (
|
29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
+
)
|
31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
+
alphas = torch.cos(alphas).pow(2)
|
33 |
+
alphas = alphas / alphas[0]
|
34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
+
|
37 |
+
elif schedule == "sqrt_linear":
|
38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
39 |
+
elif schedule == "sqrt":
|
40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
41 |
+
else:
|
42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
43 |
+
return betas.numpy()
|
44 |
+
|
45 |
+
|
46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
47 |
+
if ddim_discr_method == 'uniform':
|
48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
50 |
+
elif ddim_discr_method == 'quad':
|
51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
52 |
+
else:
|
53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
54 |
+
|
55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
57 |
+
if c != 1:
|
58 |
+
steps_out = ddim_timesteps + 1
|
59 |
+
else:
|
60 |
+
steps_out = ddim_timesteps
|
61 |
+
if verbose:
|
62 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
63 |
+
return steps_out
|
64 |
+
|
65 |
+
|
66 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
67 |
+
# select alphas for computing the variance schedule
|
68 |
+
|
69 |
+
alphas = alphacums[ddim_timesteps]
|
70 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
71 |
+
|
72 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
73 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
74 |
+
if verbose:
|
75 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
76 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
77 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
78 |
+
return sigmas, alphas, alphas_prev
|
79 |
+
|
80 |
+
|
81 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
82 |
+
"""
|
83 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
84 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
85 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
86 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
87 |
+
produces the cumulative product of (1-beta) up to that
|
88 |
+
part of the diffusion process.
|
89 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
90 |
+
prevent singularities.
|
91 |
+
"""
|
92 |
+
betas = []
|
93 |
+
for i in range(num_diffusion_timesteps):
|
94 |
+
t1 = i / num_diffusion_timesteps
|
95 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
96 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
97 |
+
return np.array(betas)
|
98 |
+
|
99 |
+
|
100 |
+
def extract_into_tensor(a, t, x_shape):
|
101 |
+
b, *_ = t.shape
|
102 |
+
out = a.gather(-1, t)
|
103 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
104 |
+
|
105 |
+
|
106 |
+
def checkpoint(func, inputs, params, flag):
|
107 |
+
"""
|
108 |
+
Evaluate a function without caching intermediate activations, allowing for
|
109 |
+
reduced memory at the expense of extra compute in the backward pass.
|
110 |
+
:param func: the function to evaluate.
|
111 |
+
:param inputs: the argument sequence to pass to `func`.
|
112 |
+
:param params: a sequence of parameters `func` depends on but does not
|
113 |
+
explicitly take as arguments.
|
114 |
+
:param flag: if False, disable gradient checkpointing.
|
115 |
+
"""
|
116 |
+
if flag:
|
117 |
+
args = tuple(inputs) + tuple(params)
|
118 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
119 |
+
else:
|
120 |
+
return func(*inputs)
|
121 |
+
|
122 |
+
|
123 |
+
class CheckpointFunction(torch.autograd.Function):
|
124 |
+
@staticmethod
|
125 |
+
def forward(ctx, run_function, length, *args):
|
126 |
+
ctx.run_function = run_function
|
127 |
+
ctx.input_tensors = list(args[:length])
|
128 |
+
ctx.input_params = list(args[length:])
|
129 |
+
|
130 |
+
with torch.no_grad():
|
131 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
132 |
+
return output_tensors
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def backward(ctx, *output_grads):
|
136 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
137 |
+
with torch.enable_grad():
|
138 |
+
# Fixes a bug where the first op in run_function modifies the
|
139 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
140 |
+
# Tensors.
|
141 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
142 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
143 |
+
input_grads = torch.autograd.grad(
|
144 |
+
output_tensors,
|
145 |
+
ctx.input_tensors + ctx.input_params,
|
146 |
+
output_grads,
|
147 |
+
allow_unused=True,
|
148 |
+
)
|
149 |
+
del ctx.input_tensors
|
150 |
+
del ctx.input_params
|
151 |
+
del output_tensors
|
152 |
+
return (None, None) + input_grads
|
153 |
+
|
154 |
+
|
155 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
156 |
+
"""
|
157 |
+
Create sinusoidal timestep embeddings.
|
158 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
159 |
+
These may be fractional.
|
160 |
+
:param dim: the dimension of the output.
|
161 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
162 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
163 |
+
"""
|
164 |
+
if not repeat_only:
|
165 |
+
half = dim // 2
|
166 |
+
freqs = torch.exp(
|
167 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
168 |
+
).to(device=timesteps.device)
|
169 |
+
args = timesteps[:, None].float() * freqs[None]
|
170 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
171 |
+
if dim % 2:
|
172 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
173 |
+
else:
|
174 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
175 |
+
return embedding
|
176 |
+
|
177 |
+
|
178 |
+
def zero_module(module):
|
179 |
+
"""
|
180 |
+
Zero out the parameters of a module and return it.
|
181 |
+
"""
|
182 |
+
for p in module.parameters():
|
183 |
+
p.detach().zero_()
|
184 |
+
return module
|
185 |
+
|
186 |
+
|
187 |
+
def scale_module(module, scale):
|
188 |
+
"""
|
189 |
+
Scale the parameters of a module and return it.
|
190 |
+
"""
|
191 |
+
for p in module.parameters():
|
192 |
+
p.detach().mul_(scale)
|
193 |
+
return module
|
194 |
+
|
195 |
+
|
196 |
+
def mean_flat(tensor):
|
197 |
+
"""
|
198 |
+
Take the mean over all non-batch dimensions.
|
199 |
+
"""
|
200 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
201 |
+
|
202 |
+
|
203 |
+
def normalization(channels):
|
204 |
+
"""
|
205 |
+
Make a standard normalization layer.
|
206 |
+
:param channels: number of input channels.
|
207 |
+
:return: an nn.Module for normalization.
|
208 |
+
"""
|
209 |
+
return GroupNorm32(32, channels)
|
210 |
+
|
211 |
+
|
212 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
213 |
+
class SiLU(nn.Module):
|
214 |
+
def forward(self, x):
|
215 |
+
return x * torch.sigmoid(x)
|
216 |
+
|
217 |
+
|
218 |
+
class GroupNorm32(nn.GroupNorm):
|
219 |
+
def forward(self, x):
|
220 |
+
return super().forward(x.float()).type(x.dtype)
|
221 |
+
|
222 |
+
def conv_nd(dims, *args, **kwargs):
|
223 |
+
"""
|
224 |
+
Create a 1D, 2D, or 3D convolution module.
|
225 |
+
"""
|
226 |
+
if dims == 1:
|
227 |
+
return nn.Conv1d(*args, **kwargs)
|
228 |
+
elif dims == 2:
|
229 |
+
return nn.Conv2d(*args, **kwargs)
|
230 |
+
elif dims == 3:
|
231 |
+
return nn.Conv3d(*args, **kwargs)
|
232 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
233 |
+
|
234 |
+
|
235 |
+
def linear(*args, **kwargs):
|
236 |
+
"""
|
237 |
+
Create a linear module.
|
238 |
+
"""
|
239 |
+
return nn.Linear(*args, **kwargs)
|
240 |
+
|
241 |
+
|
242 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
243 |
+
"""
|
244 |
+
Create a 1D, 2D, or 3D average pooling module.
|
245 |
+
"""
|
246 |
+
if dims == 1:
|
247 |
+
return nn.AvgPool1d(*args, **kwargs)
|
248 |
+
elif dims == 2:
|
249 |
+
return nn.AvgPool2d(*args, **kwargs)
|
250 |
+
elif dims == 3:
|
251 |
+
return nn.AvgPool3d(*args, **kwargs)
|
252 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
253 |
+
|
254 |
+
|
255 |
+
class HybridConditioner(nn.Module):
|
256 |
+
|
257 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
258 |
+
super().__init__()
|
259 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
260 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
261 |
+
|
262 |
+
def forward(self, c_concat, c_crossattn):
|
263 |
+
c_concat = self.concat_conditioner(c_concat)
|
264 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
265 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
266 |
+
|
267 |
+
|
268 |
+
def noise_like(shape, device, repeat=False):
|
269 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
270 |
+
noise = lambda: torch.randn(shape, device=device)
|
271 |
+
return repeat_noise() if repeat else noise()
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (4.86 kB). View file
|
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .vqgan import VQGAN
|
2 |
+
from .codebook import Codebook
|
3 |
+
from .lpips import LPIPS
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (297 Bytes). View file
|
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/codebook.cpython-38.pyc
ADDED
Binary file (3.43 kB). View file
|
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/lpips.cpython-38.pyc
ADDED
Binary file (6.8 kB). View file
|
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/__pycache__/vqgan.cpython-38.pyc
ADDED
Binary file (16.6 kB). View file
|
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/cache/vgg.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a78928a0af1e5f0fcb1f3b9e8f8c3a2a5a3de244d830ad5c1feddc79b8432868
|
3 |
+
size 7289
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/codebook.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Adapted from https://github.com/SongweiGe/TATS"""
|
2 |
+
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.distributed as dist
|
10 |
+
|
11 |
+
from ..utils import shift_dim
|
12 |
+
|
13 |
+
|
14 |
+
class Codebook(nn.Module):
|
15 |
+
def __init__(self, n_codes, embedding_dim, no_random_restart=False, restart_thres=1.0):
|
16 |
+
super().__init__()
|
17 |
+
self.register_buffer('embeddings', torch.randn(n_codes, embedding_dim))
|
18 |
+
self.register_buffer('N', torch.zeros(n_codes))
|
19 |
+
self.register_buffer('z_avg', self.embeddings.data.clone())
|
20 |
+
|
21 |
+
self.n_codes = n_codes
|
22 |
+
self.embedding_dim = embedding_dim
|
23 |
+
self._need_init = True
|
24 |
+
self.no_random_restart = no_random_restart
|
25 |
+
self.restart_thres = restart_thres
|
26 |
+
|
27 |
+
def _tile(self, x):
|
28 |
+
d, ew = x.shape
|
29 |
+
if d < self.n_codes:
|
30 |
+
n_repeats = (self.n_codes + d - 1) // d
|
31 |
+
std = 0.01 / np.sqrt(ew)
|
32 |
+
x = x.repeat(n_repeats, 1)
|
33 |
+
x = x + torch.randn_like(x) * std
|
34 |
+
return x
|
35 |
+
|
36 |
+
def _init_embeddings(self, z):
|
37 |
+
# z: [b, c, t, h, w]
|
38 |
+
self._need_init = False
|
39 |
+
breakpoint()
|
40 |
+
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) # [65536, 8] [2, 8, 32, 32, 32]
|
41 |
+
y = self._tile(flat_inputs) # [65536, 8]
|
42 |
+
|
43 |
+
d = y.shape[0]
|
44 |
+
_k_rand = y[torch.randperm(y.shape[0])][:self.n_codes]
|
45 |
+
if dist.is_initialized():
|
46 |
+
dist.broadcast(_k_rand, 0)
|
47 |
+
self.embeddings.data.copy_(_k_rand)
|
48 |
+
self.z_avg.data.copy_(_k_rand)
|
49 |
+
self.N.data.copy_(torch.ones(self.n_codes))
|
50 |
+
|
51 |
+
def forward(self, z):
|
52 |
+
# z: [b, c, t, h, w]
|
53 |
+
if self._need_init and self.training:
|
54 |
+
self._init_embeddings(z)
|
55 |
+
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) # [bthw, c] [65536, 8]
|
56 |
+
distances = (flat_inputs ** 2).sum(dim=1, keepdim=True) \
|
57 |
+
- 2 * flat_inputs @ self.embeddings.t() \
|
58 |
+
+ (self.embeddings.t() ** 2).sum(dim=0, keepdim=True) # [bthw, c] [65536, 8]
|
59 |
+
|
60 |
+
encoding_indices = torch.argmin(distances, dim=1) # [65536]
|
61 |
+
encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(
|
62 |
+
flat_inputs) # [bthw, ncode] [65536, 16384]
|
63 |
+
encoding_indices = encoding_indices.view(
|
64 |
+
z.shape[0], *z.shape[2:]) # [b, t, h, w, ncode] [2, 32, 32, 32]
|
65 |
+
|
66 |
+
embeddings = F.embedding(
|
67 |
+
encoding_indices, self.embeddings) # [b, t, h, w, c] self.embeddings [16384, 8]
|
68 |
+
embeddings = shift_dim(embeddings, -1, 1) # [b, c, t, h, w] [2, 8, 32, 32, 32]
|
69 |
+
|
70 |
+
commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach())
|
71 |
+
|
72 |
+
# EMA codebook update
|
73 |
+
if self.training:
|
74 |
+
n_total = encode_onehot.sum(dim=0) # [16384]
|
75 |
+
encode_sum = flat_inputs.t() @ encode_onehot # [8, 16384]
|
76 |
+
if dist.is_initialized():
|
77 |
+
dist.all_reduce(n_total)
|
78 |
+
dist.all_reduce(encode_sum)
|
79 |
+
|
80 |
+
self.N.data.mul_(0.99).add_(n_total, alpha=0.01)
|
81 |
+
self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01)
|
82 |
+
|
83 |
+
n = self.N.sum()
|
84 |
+
weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n
|
85 |
+
encode_normalized = self.z_avg / weights.unsqueeze(1)
|
86 |
+
self.embeddings.data.copy_(encode_normalized)
|
87 |
+
|
88 |
+
y = self._tile(flat_inputs)
|
89 |
+
_k_rand = y[torch.randperm(y.shape[0])][:self.n_codes]
|
90 |
+
if dist.is_initialized():
|
91 |
+
dist.broadcast(_k_rand, 0)
|
92 |
+
|
93 |
+
if not self.no_random_restart:
|
94 |
+
usage = (self.N.view(self.n_codes, 1)
|
95 |
+
>= self.restart_thres).float()
|
96 |
+
self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage))
|
97 |
+
|
98 |
+
embeddings_st = (embeddings - z).detach() + z
|
99 |
+
|
100 |
+
avg_probs = torch.mean(encode_onehot, dim=0)
|
101 |
+
perplexity = torch.exp(-torch.sum(avg_probs *
|
102 |
+
torch.log(avg_probs + 1e-10)))
|
103 |
+
|
104 |
+
return dict(embeddings=embeddings_st, encodings=encoding_indices,
|
105 |
+
commitment_loss=commitment_loss, perplexity=perplexity)
|
106 |
+
|
107 |
+
def dictionary_lookup(self, encodings):
|
108 |
+
embeddings = F.embedding(encodings, self.embeddings)
|
109 |
+
return embeddings
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/lpips.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Adapted from https://github.com/SongweiGe/TATS"""
|
2 |
+
|
3 |
+
"""Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models"""
|
4 |
+
|
5 |
+
|
6 |
+
from collections import namedtuple
|
7 |
+
from torchvision import models
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
+
import requests
|
12 |
+
import os
|
13 |
+
import hashlib
|
14 |
+
URL_MAP = {
|
15 |
+
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"
|
16 |
+
}
|
17 |
+
|
18 |
+
CKPT_MAP = {
|
19 |
+
"vgg_lpips": "vgg.pth"
|
20 |
+
}
|
21 |
+
|
22 |
+
MD5_MAP = {
|
23 |
+
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def download(url, local_path, chunk_size=1024):
|
28 |
+
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
|
29 |
+
with requests.get(url, stream=True) as r:
|
30 |
+
total_size = int(r.headers.get("content-length", 0))
|
31 |
+
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
|
32 |
+
with open(local_path, "wb") as f:
|
33 |
+
for data in r.iter_content(chunk_size=chunk_size):
|
34 |
+
if data:
|
35 |
+
f.write(data)
|
36 |
+
pbar.update(chunk_size)
|
37 |
+
|
38 |
+
|
39 |
+
def md5_hash(path):
|
40 |
+
with open(path, "rb") as f:
|
41 |
+
content = f.read()
|
42 |
+
return hashlib.md5(content).hexdigest()
|
43 |
+
|
44 |
+
|
45 |
+
def get_ckpt_path(name, root, check=False):
|
46 |
+
assert name in URL_MAP
|
47 |
+
path = os.path.join(root, CKPT_MAP[name])
|
48 |
+
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
|
49 |
+
print("Downloading {} model from {} to {}".format(
|
50 |
+
name, URL_MAP[name], path))
|
51 |
+
download(URL_MAP[name], path)
|
52 |
+
md5 = md5_hash(path)
|
53 |
+
assert md5 == MD5_MAP[name], md5
|
54 |
+
return path
|
55 |
+
|
56 |
+
|
57 |
+
class LPIPS(nn.Module):
|
58 |
+
# Learned perceptual metric
|
59 |
+
def __init__(self, use_dropout=True):
|
60 |
+
super().__init__()
|
61 |
+
self.scaling_layer = ScalingLayer()
|
62 |
+
self.chns = [64, 128, 256, 512, 512] # vg16 features
|
63 |
+
self.net = vgg16(pretrained=True, requires_grad=False)
|
64 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
65 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
66 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
67 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
68 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
69 |
+
# self.load_from_pretrained()
|
70 |
+
for param in self.parameters():
|
71 |
+
param.requires_grad = False
|
72 |
+
|
73 |
+
def load_from_pretrained(self, name="vgg_lpips"):
|
74 |
+
ckpt = get_ckpt_path(name, os.path.join(
|
75 |
+
os.path.dirname(os.path.abspath(__file__)), "cache"))
|
76 |
+
self.load_state_dict(torch.load(
|
77 |
+
ckpt, map_location=torch.device("cpu")), strict=False)
|
78 |
+
print("loaded pretrained LPIPS loss from {}".format(ckpt))
|
79 |
+
|
80 |
+
@classmethod
|
81 |
+
def from_pretrained(cls, name="vgg_lpips"):
|
82 |
+
if name is not "vgg_lpips":
|
83 |
+
raise NotImplementedError
|
84 |
+
model = cls()
|
85 |
+
ckpt = get_ckpt_path(name, os.path.join(
|
86 |
+
os.path.dirname(os.path.abspath(__file__)), "cache"))
|
87 |
+
model.load_state_dict(torch.load(
|
88 |
+
ckpt, map_location=torch.device("cpu")), strict=False)
|
89 |
+
return model
|
90 |
+
|
91 |
+
def forward(self, input, target):
|
92 |
+
in0_input, in1_input = (self.scaling_layer(
|
93 |
+
input), self.scaling_layer(target))
|
94 |
+
outs0, outs1 = self.net(in0_input), self.net(in1_input)
|
95 |
+
feats0, feats1, diffs = {}, {}, {}
|
96 |
+
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
|
97 |
+
for kk in range(len(self.chns)):
|
98 |
+
feats0[kk], feats1[kk] = normalize_tensor(
|
99 |
+
outs0[kk]), normalize_tensor(outs1[kk])
|
100 |
+
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
|
101 |
+
|
102 |
+
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True)
|
103 |
+
for kk in range(len(self.chns))]
|
104 |
+
val = res[0]
|
105 |
+
for l in range(1, len(self.chns)):
|
106 |
+
val += res[l]
|
107 |
+
return val
|
108 |
+
|
109 |
+
|
110 |
+
class ScalingLayer(nn.Module):
|
111 |
+
def __init__(self):
|
112 |
+
super(ScalingLayer, self).__init__()
|
113 |
+
self.register_buffer('shift', torch.Tensor(
|
114 |
+
[-.030, -.088, -.188])[None, :, None, None])
|
115 |
+
self.register_buffer('scale', torch.Tensor(
|
116 |
+
[.458, .448, .450])[None, :, None, None])
|
117 |
+
|
118 |
+
def forward(self, inp):
|
119 |
+
return (inp - self.shift) / self.scale
|
120 |
+
|
121 |
+
|
122 |
+
class NetLinLayer(nn.Module):
|
123 |
+
""" A single linear layer which does a 1x1 conv """
|
124 |
+
|
125 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
126 |
+
super(NetLinLayer, self).__init__()
|
127 |
+
layers = [nn.Dropout(), ] if (use_dropout) else []
|
128 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1,
|
129 |
+
padding=0, bias=False), ]
|
130 |
+
self.model = nn.Sequential(*layers)
|
131 |
+
|
132 |
+
|
133 |
+
class vgg16(torch.nn.Module):
|
134 |
+
def __init__(self, requires_grad=False, pretrained=True):
|
135 |
+
super(vgg16, self).__init__()
|
136 |
+
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
137 |
+
self.slice1 = torch.nn.Sequential()
|
138 |
+
self.slice2 = torch.nn.Sequential()
|
139 |
+
self.slice3 = torch.nn.Sequential()
|
140 |
+
self.slice4 = torch.nn.Sequential()
|
141 |
+
self.slice5 = torch.nn.Sequential()
|
142 |
+
self.N_slices = 5
|
143 |
+
for x in range(4):
|
144 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
145 |
+
for x in range(4, 9):
|
146 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
147 |
+
for x in range(9, 16):
|
148 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
149 |
+
for x in range(16, 23):
|
150 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
151 |
+
for x in range(23, 30):
|
152 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
153 |
+
if not requires_grad:
|
154 |
+
for param in self.parameters():
|
155 |
+
param.requires_grad = False
|
156 |
+
|
157 |
+
def forward(self, X):
|
158 |
+
h = self.slice1(X)
|
159 |
+
h_relu1_2 = h
|
160 |
+
h = self.slice2(h)
|
161 |
+
h_relu2_2 = h
|
162 |
+
h = self.slice3(h)
|
163 |
+
h_relu3_3 = h
|
164 |
+
h = self.slice4(h)
|
165 |
+
h_relu4_3 = h
|
166 |
+
h = self.slice5(h)
|
167 |
+
h_relu5_3 = h
|
168 |
+
vgg_outputs = namedtuple(
|
169 |
+
"VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
|
170 |
+
out = vgg_outputs(h_relu1_2, h_relu2_2,
|
171 |
+
h_relu3_3, h_relu4_3, h_relu5_3)
|
172 |
+
return out
|
173 |
+
|
174 |
+
|
175 |
+
def normalize_tensor(x, eps=1e-10):
|
176 |
+
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
|
177 |
+
return x/(norm_factor+eps)
|
178 |
+
|
179 |
+
|
180 |
+
def spatial_average(x, keepdim=True):
|
181 |
+
return x.mean([2, 3], keepdim=keepdim)
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/model/vqgan.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Adapted from https://github.com/SongweiGe/TATS"""
|
2 |
+
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
|
3 |
+
|
4 |
+
import math
|
5 |
+
import argparse
|
6 |
+
import numpy as np
|
7 |
+
import pickle as pkl
|
8 |
+
|
9 |
+
import pytorch_lightning as pl
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.distributed as dist
|
14 |
+
|
15 |
+
from ..utils import shift_dim, adopt_weight, comp_getattr
|
16 |
+
from .lpips import LPIPS
|
17 |
+
from .codebook import Codebook
|
18 |
+
|
19 |
+
|
20 |
+
def silu(x):
|
21 |
+
return x*torch.sigmoid(x)
|
22 |
+
|
23 |
+
|
24 |
+
class SiLU(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(SiLU, self).__init__()
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
return silu(x)
|
30 |
+
|
31 |
+
|
32 |
+
def hinge_d_loss(logits_real, logits_fake):
|
33 |
+
loss_real = torch.mean(F.relu(1. - logits_real))
|
34 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake))
|
35 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
36 |
+
return d_loss
|
37 |
+
|
38 |
+
|
39 |
+
def vanilla_d_loss(logits_real, logits_fake):
|
40 |
+
d_loss = 0.5 * (
|
41 |
+
torch.mean(torch.nn.functional.softplus(-logits_real)) +
|
42 |
+
torch.mean(torch.nn.functional.softplus(logits_fake)))
|
43 |
+
return d_loss
|
44 |
+
|
45 |
+
|
46 |
+
class VQGAN(pl.LightningModule):
|
47 |
+
def __init__(self, cfg):
|
48 |
+
super().__init__()
|
49 |
+
self.cfg = cfg
|
50 |
+
self.embedding_dim = cfg.model.embedding_dim # 8
|
51 |
+
self.n_codes = cfg.model.n_codes # 16384
|
52 |
+
|
53 |
+
self.encoder = Encoder(cfg.model.n_hiddens, # 16
|
54 |
+
cfg.model.downsample, # [2, 2, 2]
|
55 |
+
cfg.dataset.image_channels, # 1
|
56 |
+
cfg.model.norm_type, # group
|
57 |
+
cfg.model.padding_type, # replicate
|
58 |
+
cfg.model.num_groups, # 32
|
59 |
+
)
|
60 |
+
self.decoder = Decoder(
|
61 |
+
cfg.model.n_hiddens, cfg.model.downsample, cfg.dataset.image_channels, cfg.model.norm_type, cfg.model.num_groups)
|
62 |
+
self.enc_out_ch = self.encoder.out_channels
|
63 |
+
self.pre_vq_conv = SamePadConv3d(
|
64 |
+
self.enc_out_ch, cfg.model.embedding_dim, 1, padding_type=cfg.model.padding_type)
|
65 |
+
self.post_vq_conv = SamePadConv3d(
|
66 |
+
cfg.model.embedding_dim, self.enc_out_ch, 1)
|
67 |
+
|
68 |
+
self.codebook = Codebook(cfg.model.n_codes, cfg.model.embedding_dim,
|
69 |
+
no_random_restart=cfg.model.no_random_restart, restart_thres=cfg.model.restart_thres)
|
70 |
+
|
71 |
+
self.gan_feat_weight = cfg.model.gan_feat_weight
|
72 |
+
# TODO: Changed batchnorm from sync to normal
|
73 |
+
self.image_discriminator = NLayerDiscriminator(
|
74 |
+
cfg.dataset.image_channels, cfg.model.disc_channels, cfg.model.disc_layers, norm_layer=nn.BatchNorm2d)
|
75 |
+
self.video_discriminator = NLayerDiscriminator3D(
|
76 |
+
cfg.dataset.image_channels, cfg.model.disc_channels, cfg.model.disc_layers, norm_layer=nn.BatchNorm3d)
|
77 |
+
|
78 |
+
if cfg.model.disc_loss_type == 'vanilla':
|
79 |
+
self.disc_loss = vanilla_d_loss
|
80 |
+
elif cfg.model.disc_loss_type == 'hinge':
|
81 |
+
self.disc_loss = hinge_d_loss
|
82 |
+
|
83 |
+
self.perceptual_model = LPIPS().eval()
|
84 |
+
|
85 |
+
self.image_gan_weight = cfg.model.image_gan_weight
|
86 |
+
self.video_gan_weight = cfg.model.video_gan_weight
|
87 |
+
|
88 |
+
self.perceptual_weight = cfg.model.perceptual_weight
|
89 |
+
|
90 |
+
self.l1_weight = cfg.model.l1_weight
|
91 |
+
self.save_hyperparameters()
|
92 |
+
|
93 |
+
def encode(self, x, include_embeddings=False, quantize=True):
|
94 |
+
h = self.pre_vq_conv(self.encoder(x))
|
95 |
+
if quantize:
|
96 |
+
vq_output = self.codebook(h)
|
97 |
+
if include_embeddings:
|
98 |
+
return vq_output['embeddings'], vq_output['encodings']
|
99 |
+
else:
|
100 |
+
return vq_output['encodings']
|
101 |
+
return h
|
102 |
+
|
103 |
+
def decode(self, latent, quantize=False):
|
104 |
+
if quantize:
|
105 |
+
vq_output = self.codebook(latent)
|
106 |
+
latent = vq_output['encodings']
|
107 |
+
h = F.embedding(latent, self.codebook.embeddings)
|
108 |
+
h = self.post_vq_conv(shift_dim(h, -1, 1))
|
109 |
+
return self.decoder(h)
|
110 |
+
|
111 |
+
def forward(self, x, optimizer_idx=None, log_image=False):
|
112 |
+
B, C, T, H, W = x.shape
|
113 |
+
z = self.pre_vq_conv(self.encoder(x)) # [2, 32, 32, 32, 32] [2, 8, 32, 32, 32]
|
114 |
+
vq_output = self.codebook(z) # ['embeddings', 'encodings', 'commitment_loss', 'perplexity']
|
115 |
+
x_recon = self.decoder(self.post_vq_conv(vq_output['embeddings'])) # [2, 8, 32, 32, 32] [2, 32, 32, 32, 32]
|
116 |
+
|
117 |
+
recon_loss = F.l1_loss(x_recon, x) * self.l1_weight
|
118 |
+
|
119 |
+
# Selects one random 2D image from each 3D Image
|
120 |
+
frame_idx = torch.randint(0, T, [B]).cuda()
|
121 |
+
frame_idx_selected = frame_idx.reshape(-1,
|
122 |
+
1, 1, 1, 1).repeat(1, C, 1, H, W) # [2, 1, 1, 64, 64]
|
123 |
+
frames = torch.gather(x, 2, frame_idx_selected).squeeze(2) # [2, 1, 64, 64]
|
124 |
+
frames_recon = torch.gather(x_recon, 2, frame_idx_selected).squeeze(2) # [2, 1, 64, 64]
|
125 |
+
|
126 |
+
if log_image:
|
127 |
+
return frames, frames_recon, x, x_recon
|
128 |
+
|
129 |
+
if optimizer_idx == 0:
|
130 |
+
# Autoencoder - train the "generator"
|
131 |
+
|
132 |
+
# Perceptual loss
|
133 |
+
perceptual_loss = 0
|
134 |
+
if self.perceptual_weight > 0:
|
135 |
+
perceptual_loss = self.perceptual_model(
|
136 |
+
frames, frames_recon).mean() * self.perceptual_weight
|
137 |
+
|
138 |
+
# Discriminator loss (turned on after a certain epoch)
|
139 |
+
logits_image_fake, pred_image_fake = self.image_discriminator(
|
140 |
+
frames_recon)
|
141 |
+
logits_video_fake, pred_video_fake = self.video_discriminator(
|
142 |
+
x_recon)
|
143 |
+
g_image_loss = -torch.mean(logits_image_fake)
|
144 |
+
g_video_loss = -torch.mean(logits_video_fake)
|
145 |
+
g_loss = self.image_gan_weight*g_image_loss + self.video_gan_weight*g_video_loss
|
146 |
+
disc_factor = adopt_weight(
|
147 |
+
self.global_step, threshold=self.cfg.model.discriminator_iter_start)
|
148 |
+
aeloss = disc_factor * g_loss
|
149 |
+
|
150 |
+
# GAN feature matching loss - tune features such that we get the same prediction result on the discriminator
|
151 |
+
image_gan_feat_loss = 0
|
152 |
+
video_gan_feat_loss = 0
|
153 |
+
feat_weights = 4.0 / (3 + 1)
|
154 |
+
if self.image_gan_weight > 0:
|
155 |
+
logits_image_real, pred_image_real = self.image_discriminator(
|
156 |
+
frames)
|
157 |
+
for i in range(len(pred_image_fake)-1):
|
158 |
+
image_gan_feat_loss += feat_weights * \
|
159 |
+
F.l1_loss(pred_image_fake[i], pred_image_real[i].detach(
|
160 |
+
)) * (self.image_gan_weight > 0)
|
161 |
+
if self.video_gan_weight > 0:
|
162 |
+
logits_video_real, pred_video_real = self.video_discriminator(
|
163 |
+
x)
|
164 |
+
for i in range(len(pred_video_fake)-1):
|
165 |
+
video_gan_feat_loss += feat_weights * \
|
166 |
+
F.l1_loss(pred_video_fake[i], pred_video_real[i].detach(
|
167 |
+
)) * (self.video_gan_weight > 0)
|
168 |
+
gan_feat_loss = disc_factor * self.gan_feat_weight * \
|
169 |
+
(image_gan_feat_loss + video_gan_feat_loss)
|
170 |
+
|
171 |
+
self.log("train/g_image_loss", g_image_loss,
|
172 |
+
logger=True, on_step=True, on_epoch=True)
|
173 |
+
self.log("train/g_video_loss", g_video_loss,
|
174 |
+
logger=True, on_step=True, on_epoch=True)
|
175 |
+
self.log("train/image_gan_feat_loss", image_gan_feat_loss,
|
176 |
+
logger=True, on_step=True, on_epoch=True)
|
177 |
+
self.log("train/video_gan_feat_loss", video_gan_feat_loss,
|
178 |
+
logger=True, on_step=True, on_epoch=True)
|
179 |
+
self.log("train/perceptual_loss", perceptual_loss,
|
180 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
181 |
+
self.log("train/recon_loss", recon_loss, prog_bar=True,
|
182 |
+
logger=True, on_step=True, on_epoch=True)
|
183 |
+
self.log("train/aeloss", aeloss, prog_bar=True,
|
184 |
+
logger=True, on_step=True, on_epoch=True)
|
185 |
+
self.log("train/commitment_loss", vq_output['commitment_loss'],
|
186 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
187 |
+
self.log('train/perplexity', vq_output['perplexity'],
|
188 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
189 |
+
return recon_loss, x_recon, vq_output, aeloss, perceptual_loss, gan_feat_loss
|
190 |
+
|
191 |
+
if optimizer_idx == 1:
|
192 |
+
# Train discriminator
|
193 |
+
logits_image_real, _ = self.image_discriminator(frames.detach())
|
194 |
+
logits_video_real, _ = self.video_discriminator(x.detach())
|
195 |
+
|
196 |
+
logits_image_fake, _ = self.image_discriminator(
|
197 |
+
frames_recon.detach())
|
198 |
+
logits_video_fake, _ = self.video_discriminator(x_recon.detach())
|
199 |
+
|
200 |
+
d_image_loss = self.disc_loss(logits_image_real, logits_image_fake)
|
201 |
+
d_video_loss = self.disc_loss(logits_video_real, logits_video_fake)
|
202 |
+
disc_factor = adopt_weight(
|
203 |
+
self.global_step, threshold=self.cfg.model.discriminator_iter_start)
|
204 |
+
discloss = disc_factor * \
|
205 |
+
(self.image_gan_weight*d_image_loss +
|
206 |
+
self.video_gan_weight*d_video_loss)
|
207 |
+
|
208 |
+
self.log("train/logits_image_real", logits_image_real.mean().detach(),
|
209 |
+
logger=True, on_step=True, on_epoch=True)
|
210 |
+
self.log("train/logits_image_fake", logits_image_fake.mean().detach(),
|
211 |
+
logger=True, on_step=True, on_epoch=True)
|
212 |
+
self.log("train/logits_video_real", logits_video_real.mean().detach(),
|
213 |
+
logger=True, on_step=True, on_epoch=True)
|
214 |
+
self.log("train/logits_video_fake", logits_video_fake.mean().detach(),
|
215 |
+
logger=True, on_step=True, on_epoch=True)
|
216 |
+
self.log("train/d_image_loss", d_image_loss,
|
217 |
+
logger=True, on_step=True, on_epoch=True)
|
218 |
+
self.log("train/d_video_loss", d_video_loss,
|
219 |
+
logger=True, on_step=True, on_epoch=True)
|
220 |
+
self.log("train/discloss", discloss, prog_bar=True,
|
221 |
+
logger=True, on_step=True, on_epoch=True)
|
222 |
+
return discloss
|
223 |
+
|
224 |
+
perceptual_loss = self.perceptual_model(
|
225 |
+
frames, frames_recon) * self.perceptual_weight
|
226 |
+
return recon_loss, x_recon, vq_output, perceptual_loss
|
227 |
+
|
228 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
229 |
+
x = batch['image']
|
230 |
+
if optimizer_idx == 0:
|
231 |
+
recon_loss, _, vq_output, aeloss, perceptual_loss, gan_feat_loss = self.forward(
|
232 |
+
x, optimizer_idx)
|
233 |
+
commitment_loss = vq_output['commitment_loss']
|
234 |
+
loss = recon_loss + commitment_loss + aeloss + perceptual_loss + gan_feat_loss
|
235 |
+
if optimizer_idx == 1:
|
236 |
+
discloss = self.forward(x, optimizer_idx)
|
237 |
+
loss = discloss
|
238 |
+
return loss
|
239 |
+
|
240 |
+
def validation_step(self, batch, batch_idx):
|
241 |
+
x = batch['image'] # TODO: batch['stft']
|
242 |
+
recon_loss, _, vq_output, perceptual_loss = self.forward(x)
|
243 |
+
self.log('val/recon_loss', recon_loss, prog_bar=True)
|
244 |
+
self.log('val/perceptual_loss', perceptual_loss, prog_bar=True)
|
245 |
+
self.log('val/perplexity', vq_output['perplexity'], prog_bar=True)
|
246 |
+
self.log('val/commitment_loss',
|
247 |
+
vq_output['commitment_loss'], prog_bar=True)
|
248 |
+
|
249 |
+
def configure_optimizers(self):
|
250 |
+
lr = self.cfg.model.lr
|
251 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters()) +
|
252 |
+
list(self.decoder.parameters()) +
|
253 |
+
list(self.pre_vq_conv.parameters()) +
|
254 |
+
list(self.post_vq_conv.parameters()) +
|
255 |
+
list(self.codebook.parameters()),
|
256 |
+
lr=lr, betas=(0.5, 0.9))
|
257 |
+
opt_disc = torch.optim.Adam(list(self.image_discriminator.parameters()) +
|
258 |
+
list(self.video_discriminator.parameters()),
|
259 |
+
lr=lr, betas=(0.5, 0.9))
|
260 |
+
return [opt_ae, opt_disc], []
|
261 |
+
|
262 |
+
def log_images(self, batch, **kwargs):
|
263 |
+
log = dict()
|
264 |
+
x = batch['image']
|
265 |
+
x = x.to(self.device)
|
266 |
+
frames, frames_rec, _, _ = self(x, log_image=True)
|
267 |
+
log["inputs"] = frames
|
268 |
+
log["reconstructions"] = frames_rec
|
269 |
+
#log['mean_org'] = batch['mean_org']
|
270 |
+
#log['std_org'] = batch['std_org']
|
271 |
+
return log
|
272 |
+
|
273 |
+
def log_videos(self, batch, **kwargs):
|
274 |
+
log = dict()
|
275 |
+
x = batch['image']
|
276 |
+
_, _, x, x_rec = self(x, log_image=True)
|
277 |
+
log["inputs"] = x
|
278 |
+
log["reconstructions"] = x_rec
|
279 |
+
#log['mean_org'] = batch['mean_org']
|
280 |
+
#log['std_org'] = batch['std_org']
|
281 |
+
return log
|
282 |
+
|
283 |
+
|
284 |
+
def Normalize(in_channels, norm_type='group', num_groups=32):
|
285 |
+
assert norm_type in ['group', 'batch']
|
286 |
+
if norm_type == 'group':
|
287 |
+
# TODO Changed num_groups from 32 to 8
|
288 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
289 |
+
elif norm_type == 'batch':
|
290 |
+
return torch.nn.SyncBatchNorm(in_channels)
|
291 |
+
|
292 |
+
|
293 |
+
class Encoder(nn.Module):
|
294 |
+
def __init__(self, n_hiddens, downsample, image_channel=3, norm_type='group', padding_type='replicate', num_groups=32):
|
295 |
+
super().__init__()
|
296 |
+
n_times_downsample = np.array([int(math.log2(d)) for d in downsample])
|
297 |
+
self.conv_blocks = nn.ModuleList()
|
298 |
+
max_ds = n_times_downsample.max()
|
299 |
+
|
300 |
+
self.conv_first = SamePadConv3d(
|
301 |
+
image_channel, n_hiddens, kernel_size=3, padding_type=padding_type)
|
302 |
+
|
303 |
+
for i in range(max_ds):
|
304 |
+
block = nn.Module()
|
305 |
+
in_channels = n_hiddens * 2**i
|
306 |
+
out_channels = n_hiddens * 2**(i+1)
|
307 |
+
stride = tuple([2 if d > 0 else 1 for d in n_times_downsample])
|
308 |
+
block.down = SamePadConv3d(
|
309 |
+
in_channels, out_channels, 4, stride=stride, padding_type=padding_type)
|
310 |
+
block.res = ResBlock(
|
311 |
+
out_channels, out_channels, norm_type=norm_type, num_groups=num_groups)
|
312 |
+
self.conv_blocks.append(block)
|
313 |
+
n_times_downsample -= 1
|
314 |
+
|
315 |
+
self.final_block = nn.Sequential(
|
316 |
+
Normalize(out_channels, norm_type, num_groups=num_groups),
|
317 |
+
SiLU()
|
318 |
+
)
|
319 |
+
|
320 |
+
self.out_channels = out_channels
|
321 |
+
|
322 |
+
def forward(self, x):
|
323 |
+
h = self.conv_first(x)
|
324 |
+
for block in self.conv_blocks:
|
325 |
+
h = block.down(h)
|
326 |
+
h = block.res(h)
|
327 |
+
h = self.final_block(h)
|
328 |
+
return h
|
329 |
+
|
330 |
+
|
331 |
+
class Decoder(nn.Module):
|
332 |
+
def __init__(self, n_hiddens, upsample, image_channel, norm_type='group', num_groups=32):
|
333 |
+
super().__init__()
|
334 |
+
|
335 |
+
n_times_upsample = np.array([int(math.log2(d)) for d in upsample])
|
336 |
+
max_us = n_times_upsample.max()
|
337 |
+
|
338 |
+
in_channels = n_hiddens*2**max_us
|
339 |
+
self.final_block = nn.Sequential(
|
340 |
+
Normalize(in_channels, norm_type, num_groups=num_groups),
|
341 |
+
SiLU()
|
342 |
+
)
|
343 |
+
|
344 |
+
self.conv_blocks = nn.ModuleList()
|
345 |
+
for i in range(max_us):
|
346 |
+
block = nn.Module()
|
347 |
+
in_channels = in_channels if i == 0 else n_hiddens*2**(max_us-i+1)
|
348 |
+
out_channels = n_hiddens*2**(max_us-i)
|
349 |
+
us = tuple([2 if d > 0 else 1 for d in n_times_upsample])
|
350 |
+
block.up = SamePadConvTranspose3d(
|
351 |
+
in_channels, out_channels, 4, stride=us)
|
352 |
+
block.res1 = ResBlock(
|
353 |
+
out_channels, out_channels, norm_type=norm_type, num_groups=num_groups)
|
354 |
+
block.res2 = ResBlock(
|
355 |
+
out_channels, out_channels, norm_type=norm_type, num_groups=num_groups)
|
356 |
+
self.conv_blocks.append(block)
|
357 |
+
n_times_upsample -= 1
|
358 |
+
|
359 |
+
self.conv_last = SamePadConv3d(
|
360 |
+
out_channels, image_channel, kernel_size=3)
|
361 |
+
|
362 |
+
def forward(self, x):
|
363 |
+
h = self.final_block(x)
|
364 |
+
for i, block in enumerate(self.conv_blocks):
|
365 |
+
h = block.up(h)
|
366 |
+
h = block.res1(h)
|
367 |
+
h = block.res2(h)
|
368 |
+
h = self.conv_last(h)
|
369 |
+
return h
|
370 |
+
|
371 |
+
|
372 |
+
class ResBlock(nn.Module):
|
373 |
+
def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type='group', padding_type='replicate', num_groups=32):
|
374 |
+
super().__init__()
|
375 |
+
self.in_channels = in_channels
|
376 |
+
out_channels = in_channels if out_channels is None else out_channels
|
377 |
+
self.out_channels = out_channels
|
378 |
+
self.use_conv_shortcut = conv_shortcut
|
379 |
+
|
380 |
+
self.norm1 = Normalize(in_channels, norm_type, num_groups=num_groups)
|
381 |
+
self.conv1 = SamePadConv3d(
|
382 |
+
in_channels, out_channels, kernel_size=3, padding_type=padding_type)
|
383 |
+
self.dropout = torch.nn.Dropout(dropout)
|
384 |
+
self.norm2 = Normalize(in_channels, norm_type, num_groups=num_groups)
|
385 |
+
self.conv2 = SamePadConv3d(
|
386 |
+
out_channels, out_channels, kernel_size=3, padding_type=padding_type)
|
387 |
+
if self.in_channels != self.out_channels:
|
388 |
+
self.conv_shortcut = SamePadConv3d(
|
389 |
+
in_channels, out_channels, kernel_size=3, padding_type=padding_type)
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
h = x
|
393 |
+
h = self.norm1(h)
|
394 |
+
h = silu(h)
|
395 |
+
h = self.conv1(h)
|
396 |
+
h = self.norm2(h)
|
397 |
+
h = silu(h)
|
398 |
+
h = self.conv2(h)
|
399 |
+
|
400 |
+
if self.in_channels != self.out_channels:
|
401 |
+
x = self.conv_shortcut(x)
|
402 |
+
|
403 |
+
return x+h
|
404 |
+
|
405 |
+
|
406 |
+
# Does not support dilation
|
407 |
+
class SamePadConv3d(nn.Module):
|
408 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, padding_type='replicate'):
|
409 |
+
super().__init__()
|
410 |
+
if isinstance(kernel_size, int):
|
411 |
+
kernel_size = (kernel_size,) * 3
|
412 |
+
if isinstance(stride, int):
|
413 |
+
stride = (stride,) * 3
|
414 |
+
|
415 |
+
# assumes that the input shape is divisible by stride
|
416 |
+
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
417 |
+
pad_input = []
|
418 |
+
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
419 |
+
pad_input.append((p // 2 + p % 2, p // 2))
|
420 |
+
pad_input = sum(pad_input, tuple())
|
421 |
+
self.pad_input = pad_input
|
422 |
+
self.padding_type = padding_type
|
423 |
+
|
424 |
+
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size,
|
425 |
+
stride=stride, padding=0, bias=bias)
|
426 |
+
|
427 |
+
def forward(self, x):
|
428 |
+
return self.conv(F.pad(x, self.pad_input, mode=self.padding_type))
|
429 |
+
|
430 |
+
|
431 |
+
class SamePadConvTranspose3d(nn.Module):
|
432 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, padding_type='replicate'):
|
433 |
+
super().__init__()
|
434 |
+
if isinstance(kernel_size, int):
|
435 |
+
kernel_size = (kernel_size,) * 3
|
436 |
+
if isinstance(stride, int):
|
437 |
+
stride = (stride,) * 3
|
438 |
+
|
439 |
+
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
|
440 |
+
pad_input = []
|
441 |
+
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
|
442 |
+
pad_input.append((p // 2 + p % 2, p // 2))
|
443 |
+
pad_input = sum(pad_input, tuple())
|
444 |
+
self.pad_input = pad_input
|
445 |
+
self.padding_type = padding_type
|
446 |
+
|
447 |
+
self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size,
|
448 |
+
stride=stride, bias=bias,
|
449 |
+
padding=tuple([k - 1 for k in kernel_size]))
|
450 |
+
|
451 |
+
def forward(self, x):
|
452 |
+
return self.convt(F.pad(x, self.pad_input, mode=self.padding_type))
|
453 |
+
|
454 |
+
|
455 |
+
class NLayerDiscriminator(nn.Module):
|
456 |
+
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.SyncBatchNorm, use_sigmoid=False, getIntermFeat=True):
|
457 |
+
# def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=True):
|
458 |
+
super(NLayerDiscriminator, self).__init__()
|
459 |
+
self.getIntermFeat = getIntermFeat
|
460 |
+
self.n_layers = n_layers
|
461 |
+
|
462 |
+
kw = 4
|
463 |
+
padw = int(np.ceil((kw-1.0)/2))
|
464 |
+
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw,
|
465 |
+
stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
|
466 |
+
|
467 |
+
nf = ndf
|
468 |
+
for n in range(1, n_layers):
|
469 |
+
nf_prev = nf
|
470 |
+
nf = min(nf * 2, 512)
|
471 |
+
sequence += [[
|
472 |
+
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
|
473 |
+
norm_layer(nf), nn.LeakyReLU(0.2, True)
|
474 |
+
]]
|
475 |
+
|
476 |
+
nf_prev = nf
|
477 |
+
nf = min(nf * 2, 512)
|
478 |
+
sequence += [[
|
479 |
+
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
|
480 |
+
norm_layer(nf),
|
481 |
+
nn.LeakyReLU(0.2, True)
|
482 |
+
]]
|
483 |
+
|
484 |
+
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw,
|
485 |
+
stride=1, padding=padw)]]
|
486 |
+
|
487 |
+
if use_sigmoid:
|
488 |
+
sequence += [[nn.Sigmoid()]]
|
489 |
+
|
490 |
+
if getIntermFeat:
|
491 |
+
for n in range(len(sequence)):
|
492 |
+
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
|
493 |
+
else:
|
494 |
+
sequence_stream = []
|
495 |
+
for n in range(len(sequence)):
|
496 |
+
sequence_stream += sequence[n]
|
497 |
+
self.model = nn.Sequential(*sequence_stream)
|
498 |
+
|
499 |
+
def forward(self, input):
|
500 |
+
if self.getIntermFeat:
|
501 |
+
res = [input]
|
502 |
+
for n in range(self.n_layers+2):
|
503 |
+
model = getattr(self, 'model'+str(n))
|
504 |
+
res.append(model(res[-1]))
|
505 |
+
return res[-1], res[1:]
|
506 |
+
else:
|
507 |
+
return self.model(input), _
|
508 |
+
|
509 |
+
|
510 |
+
class NLayerDiscriminator3D(nn.Module):
|
511 |
+
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.SyncBatchNorm, use_sigmoid=False, getIntermFeat=True):
|
512 |
+
super(NLayerDiscriminator3D, self).__init__()
|
513 |
+
self.getIntermFeat = getIntermFeat
|
514 |
+
self.n_layers = n_layers
|
515 |
+
|
516 |
+
kw = 4
|
517 |
+
padw = int(np.ceil((kw-1.0)/2))
|
518 |
+
sequence = [[nn.Conv3d(input_nc, ndf, kernel_size=kw,
|
519 |
+
stride=2, padding=padw), nn.LeakyReLU(0.2, True)]]
|
520 |
+
|
521 |
+
nf = ndf
|
522 |
+
for n in range(1, n_layers):
|
523 |
+
nf_prev = nf
|
524 |
+
nf = min(nf * 2, 512)
|
525 |
+
sequence += [[
|
526 |
+
nn.Conv3d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
|
527 |
+
norm_layer(nf), nn.LeakyReLU(0.2, True)
|
528 |
+
]]
|
529 |
+
|
530 |
+
nf_prev = nf
|
531 |
+
nf = min(nf * 2, 512)
|
532 |
+
sequence += [[
|
533 |
+
nn.Conv3d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
|
534 |
+
norm_layer(nf),
|
535 |
+
nn.LeakyReLU(0.2, True)
|
536 |
+
]]
|
537 |
+
|
538 |
+
sequence += [[nn.Conv3d(nf, 1, kernel_size=kw,
|
539 |
+
stride=1, padding=padw)]]
|
540 |
+
|
541 |
+
if use_sigmoid:
|
542 |
+
sequence += [[nn.Sigmoid()]]
|
543 |
+
|
544 |
+
if getIntermFeat:
|
545 |
+
for n in range(len(sequence)):
|
546 |
+
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
|
547 |
+
else:
|
548 |
+
sequence_stream = []
|
549 |
+
for n in range(len(sequence)):
|
550 |
+
sequence_stream += sequence[n]
|
551 |
+
self.model = nn.Sequential(*sequence_stream)
|
552 |
+
|
553 |
+
def forward(self, input):
|
554 |
+
if self.getIntermFeat:
|
555 |
+
res = [input]
|
556 |
+
for n in range(self.n_layers+2):
|
557 |
+
model = getattr(self, 'model'+str(n))
|
558 |
+
res.append(model(res[-1]))
|
559 |
+
return res[-1], res[1:]
|
560 |
+
else:
|
561 |
+
return self.model(input), _
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/ldm/vq_gan_3d/utils.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Adapted from https://github.com/SongweiGe/TATS"""
|
2 |
+
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
import torch
|
6 |
+
import imageio
|
7 |
+
|
8 |
+
import math
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import sys
|
12 |
+
import pdb as pdb_original
|
13 |
+
import logging
|
14 |
+
|
15 |
+
import imageio.core.util
|
16 |
+
logging.getLogger("imageio_ffmpeg").setLevel(logging.ERROR)
|
17 |
+
|
18 |
+
|
19 |
+
class ForkedPdb(pdb_original.Pdb):
|
20 |
+
"""A Pdb subclass that may be used
|
21 |
+
from a forked multiprocessing child
|
22 |
+
|
23 |
+
"""
|
24 |
+
|
25 |
+
def interaction(self, *args, **kwargs):
|
26 |
+
_stdin = sys.stdin
|
27 |
+
try:
|
28 |
+
sys.stdin = open('/dev/stdin')
|
29 |
+
pdb_original.Pdb.interaction(self, *args, **kwargs)
|
30 |
+
finally:
|
31 |
+
sys.stdin = _stdin
|
32 |
+
|
33 |
+
|
34 |
+
# Shifts src_tf dim to dest dim
|
35 |
+
# i.e. shift_dim(x, 1, -1) would be (b, c, t, h, w) -> (b, t, h, w, c)
|
36 |
+
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
|
37 |
+
n_dims = len(x.shape)
|
38 |
+
if src_dim < 0:
|
39 |
+
src_dim = n_dims + src_dim
|
40 |
+
if dest_dim < 0:
|
41 |
+
dest_dim = n_dims + dest_dim
|
42 |
+
|
43 |
+
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
|
44 |
+
|
45 |
+
dims = list(range(n_dims))
|
46 |
+
del dims[src_dim]
|
47 |
+
|
48 |
+
permutation = []
|
49 |
+
ctr = 0
|
50 |
+
for i in range(n_dims):
|
51 |
+
if i == dest_dim:
|
52 |
+
permutation.append(src_dim)
|
53 |
+
else:
|
54 |
+
permutation.append(dims[ctr])
|
55 |
+
ctr += 1
|
56 |
+
x = x.permute(permutation)
|
57 |
+
if make_contiguous:
|
58 |
+
x = x.contiguous()
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
# reshapes tensor start from dim i (inclusive)
|
63 |
+
# to dim j (exclusive) to the desired shape
|
64 |
+
# e.g. if x.shape = (b, thw, c) then
|
65 |
+
# view_range(x, 1, 2, (t, h, w)) returns
|
66 |
+
# x of shape (b, t, h, w, c)
|
67 |
+
def view_range(x, i, j, shape):
|
68 |
+
shape = tuple(shape)
|
69 |
+
|
70 |
+
n_dims = len(x.shape)
|
71 |
+
if i < 0:
|
72 |
+
i = n_dims + i
|
73 |
+
|
74 |
+
if j is None:
|
75 |
+
j = n_dims
|
76 |
+
elif j < 0:
|
77 |
+
j = n_dims + j
|
78 |
+
|
79 |
+
assert 0 <= i < j <= n_dims
|
80 |
+
|
81 |
+
x_shape = x.shape
|
82 |
+
target_shape = x_shape[:i] + shape + x_shape[j:]
|
83 |
+
return x.view(target_shape)
|
84 |
+
|
85 |
+
|
86 |
+
def accuracy(output, target, topk=(1,)):
|
87 |
+
"""Computes the accuracy over the k top predictions for the specified values of k"""
|
88 |
+
with torch.no_grad():
|
89 |
+
maxk = max(topk)
|
90 |
+
batch_size = target.size(0)
|
91 |
+
|
92 |
+
_, pred = output.topk(maxk, 1, True, True)
|
93 |
+
pred = pred.t()
|
94 |
+
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
|
95 |
+
|
96 |
+
res = []
|
97 |
+
for k in topk:
|
98 |
+
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
|
99 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
100 |
+
return res
|
101 |
+
|
102 |
+
|
103 |
+
def tensor_slice(x, begin, size):
|
104 |
+
assert all([b >= 0 for b in begin])
|
105 |
+
size = [l - b if s == -1 else s
|
106 |
+
for s, b, l in zip(size, begin, x.shape)]
|
107 |
+
assert all([s >= 0 for s in size])
|
108 |
+
|
109 |
+
slices = [slice(b, b + s) for b, s in zip(begin, size)]
|
110 |
+
return x[slices]
|
111 |
+
|
112 |
+
|
113 |
+
def adopt_weight(global_step, threshold=0, value=0.):
|
114 |
+
weight = 1
|
115 |
+
if global_step < threshold:
|
116 |
+
weight = value
|
117 |
+
return weight
|
118 |
+
|
119 |
+
|
120 |
+
def save_video_grid(video, fname, nrow=None, fps=6):
|
121 |
+
b, c, t, h, w = video.shape
|
122 |
+
video = video.permute(0, 2, 3, 4, 1)
|
123 |
+
video = (video.cpu().numpy() * 255).astype('uint8')
|
124 |
+
if nrow is None:
|
125 |
+
nrow = math.ceil(math.sqrt(b))
|
126 |
+
ncol = math.ceil(b / nrow)
|
127 |
+
padding = 1
|
128 |
+
video_grid = np.zeros((t, (padding + h) * nrow + padding,
|
129 |
+
(padding + w) * ncol + padding, c), dtype='uint8')
|
130 |
+
for i in range(b):
|
131 |
+
r = i // ncol
|
132 |
+
c = i % ncol
|
133 |
+
start_r = (padding + h) * r
|
134 |
+
start_c = (padding + w) * c
|
135 |
+
video_grid[:, start_r:start_r + h, start_c:start_c + w] = video[i]
|
136 |
+
video = []
|
137 |
+
for i in range(t):
|
138 |
+
video.append(video_grid[i])
|
139 |
+
imageio.mimsave(fname, video, fps=fps)
|
140 |
+
## skvideo.io.vwrite(fname, video_grid, inputdict={'-r': '5'})
|
141 |
+
#print('saved videos to', fname)
|
142 |
+
|
143 |
+
|
144 |
+
def comp_getattr(args, attr_name, default=None):
|
145 |
+
if hasattr(args, attr_name):
|
146 |
+
return getattr(args, attr_name)
|
147 |
+
else:
|
148 |
+
return default
|
149 |
+
|
150 |
+
|
151 |
+
def visualize_tensors(t, name=None, nest=0):
|
152 |
+
if name is not None:
|
153 |
+
print(name, "current nest: ", nest)
|
154 |
+
print("type: ", type(t))
|
155 |
+
if 'dict' in str(type(t)):
|
156 |
+
print(t.keys())
|
157 |
+
for k in t.keys():
|
158 |
+
if t[k] is None:
|
159 |
+
print(k, "None")
|
160 |
+
else:
|
161 |
+
if 'Tensor' in str(type(t[k])):
|
162 |
+
print(k, t[k].shape)
|
163 |
+
elif 'dict' in str(type(t[k])):
|
164 |
+
print(k, 'dict')
|
165 |
+
visualize_tensors(t[k], name, nest + 1)
|
166 |
+
elif 'list' in str(type(t[k])):
|
167 |
+
print(k, len(t[k]))
|
168 |
+
visualize_tensors(t[k], name, nest + 1)
|
169 |
+
elif 'list' in str(type(t)):
|
170 |
+
print("list length: ", len(t))
|
171 |
+
for t2 in t:
|
172 |
+
visualize_tensors(t2, name, nest + 1)
|
173 |
+
elif 'Tensor' in str(type(t)):
|
174 |
+
print(t.shape)
|
175 |
+
else:
|
176 |
+
print(t)
|
177 |
+
return ""
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/utils.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Tumor Generateion
|
2 |
+
import random
|
3 |
+
import cv2
|
4 |
+
import elasticdeform
|
5 |
+
import numpy as np
|
6 |
+
from scipy.ndimage import gaussian_filter
|
7 |
+
from TumorGeneration.ldm.ddpm.ddim import DDIMSampler
|
8 |
+
|
9 |
+
# Step 1: Random select (numbers) location for tumor.
|
10 |
+
def random_select(mask_scan, organ_type):
|
11 |
+
# we first find z index and then sample point with z slice
|
12 |
+
# print('mask_scan',np.unique(mask_scan))
|
13 |
+
# print('pixel num', (mask_scan == 1).sum())
|
14 |
+
z_start, z_end = np.where(np.any(mask_scan, axis=(0, 1)))[0].min(), np.where(np.any(mask_scan, axis=(0, 1)))[0].max()
|
15 |
+
# print('z_start, z_end',z_start, z_end)
|
16 |
+
# we need to strict number z's position (0.3 - 0.7 in the middle of liver)
|
17 |
+
while 1:
|
18 |
+
z = round(random.uniform(0.3, 0.7) * (z_end - z_start)) + z_start
|
19 |
+
liver_mask = mask_scan[..., z]
|
20 |
+
# erode the mask (we don't want the edge points)
|
21 |
+
if organ_type == 'liver':
|
22 |
+
kernel = np.ones((5,5), dtype=np.uint8)
|
23 |
+
liver_mask = cv2.erode(liver_mask, kernel, iterations=1)
|
24 |
+
if (liver_mask == 1).sum() > 0:
|
25 |
+
break
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# print('liver_mask', (liver_mask == 1).sum())
|
30 |
+
coordinates = np.argwhere(liver_mask == 1)
|
31 |
+
random_index = np.random.randint(0, len(coordinates))
|
32 |
+
xyz = coordinates[random_index].tolist() # get x,y
|
33 |
+
xyz.append(z)
|
34 |
+
potential_points = xyz
|
35 |
+
|
36 |
+
return potential_points
|
37 |
+
|
38 |
+
def center_select(mask_scan):
|
39 |
+
z_start, z_end = np.where(np.any(mask_scan, axis=(0, 1)))[0].min(), np.where(np.any(mask_scan, axis=(0, 1)))[0].max()
|
40 |
+
x_start, x_end = np.where(np.any(mask_scan, axis=(1, 2)))[0].min(), np.where(np.any(mask_scan, axis=(1, 2)))[0].max()
|
41 |
+
y_start, y_end = np.where(np.any(mask_scan, axis=(0, 2)))[0].min(), np.where(np.any(mask_scan, axis=(0, 2)))[0].max()
|
42 |
+
|
43 |
+
z = round(0.5 * (z_end - z_start)) + z_start
|
44 |
+
x = round(0.5 * (x_end - x_start)) + x_start
|
45 |
+
y = round(0.5 * (y_end - y_start)) + y_start
|
46 |
+
|
47 |
+
xyz = [x, y, z]
|
48 |
+
potential_points = xyz
|
49 |
+
|
50 |
+
return potential_points
|
51 |
+
|
52 |
+
# Step 2 : generate the ellipsoid
|
53 |
+
def get_ellipsoid(x, y, z):
|
54 |
+
""""
|
55 |
+
x, y, z is the radius of this ellipsoid in x, y, z direction respectly.
|
56 |
+
"""
|
57 |
+
sh = (4*x, 4*y, 4*z)
|
58 |
+
out = np.zeros(sh, int)
|
59 |
+
aux = np.zeros(sh)
|
60 |
+
radii = np.array([x, y, z])
|
61 |
+
com = np.array([2*x, 2*y, 2*z]) # center point
|
62 |
+
|
63 |
+
# calculate the ellipsoid
|
64 |
+
bboxl = np.floor(com-radii).clip(0,None).astype(int)
|
65 |
+
bboxh = (np.ceil(com+radii)+1).clip(None, sh).astype(int)
|
66 |
+
roi = out[tuple(map(slice,bboxl,bboxh))]
|
67 |
+
roiaux = aux[tuple(map(slice,bboxl,bboxh))]
|
68 |
+
logrid = *map(np.square,np.ogrid[tuple(
|
69 |
+
map(slice,(bboxl-com)/radii,(bboxh-com-1)/radii,1j*(bboxh-bboxl)))]),
|
70 |
+
dst = (1-sum(logrid)).clip(0,None)
|
71 |
+
mask = dst>roiaux
|
72 |
+
roi[mask] = 1
|
73 |
+
np.copyto(roiaux,dst,where=mask)
|
74 |
+
|
75 |
+
return out
|
76 |
+
|
77 |
+
def get_fixed_geo(mask_scan, tumor_type, organ_type):
|
78 |
+
if tumor_type == 'large':
|
79 |
+
enlarge_x, enlarge_y, enlarge_z = 280, 280, 280
|
80 |
+
else:
|
81 |
+
enlarge_x, enlarge_y, enlarge_z = 160, 160, 160
|
82 |
+
geo_mask = np.zeros((mask_scan.shape[0] + enlarge_x, mask_scan.shape[1] + enlarge_y, mask_scan.shape[2] + enlarge_z), dtype=np.int8)
|
83 |
+
tiny_radius, small_radius, medium_radius, large_radius = 4, 8, 16, 32
|
84 |
+
|
85 |
+
if tumor_type == 'tiny':
|
86 |
+
num_tumor = random.randint(1,3)
|
87 |
+
# num_tumor = 1
|
88 |
+
for _ in range(num_tumor):
|
89 |
+
# Tiny tumor
|
90 |
+
x = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
91 |
+
y = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
92 |
+
z = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
93 |
+
sigma = random.uniform(0.5,1)
|
94 |
+
|
95 |
+
geo = get_ellipsoid(x, y, z)
|
96 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
97 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
98 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
99 |
+
point = random_select(mask_scan, organ_type)
|
100 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
101 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
102 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
103 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
104 |
+
|
105 |
+
# paste small tumor geo into test sample
|
106 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
107 |
+
|
108 |
+
if tumor_type == 'small':
|
109 |
+
num_tumor = random.randint(1,3)
|
110 |
+
# num_tumor = 1
|
111 |
+
for _ in range(num_tumor):
|
112 |
+
# Small tumor
|
113 |
+
x = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
114 |
+
y = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
115 |
+
z = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
116 |
+
sigma = random.randint(1, 2)
|
117 |
+
|
118 |
+
geo = get_ellipsoid(x, y, z)
|
119 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
120 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
121 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
122 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
123 |
+
point = random_select(mask_scan, organ_type)
|
124 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
125 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
126 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
127 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
128 |
+
|
129 |
+
# paste small tumor geo into test sample
|
130 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
131 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
132 |
+
|
133 |
+
if tumor_type == 'medium':
|
134 |
+
# num_tumor = random.randint(1, 3)
|
135 |
+
num_tumor = 1
|
136 |
+
for _ in range(num_tumor):
|
137 |
+
# medium tumor
|
138 |
+
x = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
139 |
+
y = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
140 |
+
z = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
141 |
+
sigma = random.randint(3, 6)
|
142 |
+
|
143 |
+
geo = get_ellipsoid(x, y, z)
|
144 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
145 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
146 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
147 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
148 |
+
point = random_select(mask_scan, organ_type)
|
149 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
150 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
151 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
152 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
153 |
+
|
154 |
+
# paste medium tumor geo into test sample
|
155 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
156 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
157 |
+
|
158 |
+
if tumor_type == 'large':
|
159 |
+
num_tumor = 1 # random.randint(1,3)
|
160 |
+
for _ in range(num_tumor):
|
161 |
+
# Large tumor
|
162 |
+
|
163 |
+
x = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
164 |
+
y = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
165 |
+
z = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
166 |
+
sigma = random.randint(5, 10)
|
167 |
+
|
168 |
+
geo = get_ellipsoid(x, y, z)
|
169 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
170 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
171 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
172 |
+
if organ_type == 'liver' or organ_type == 'kidney' :
|
173 |
+
point = random_select(mask_scan, organ_type)
|
174 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
175 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
176 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
177 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
178 |
+
else:
|
179 |
+
x_start, x_end = np.where(np.any(geo, axis=(1, 2)))[0].min(), np.where(np.any(geo, axis=(1, 2)))[0].max()
|
180 |
+
y_start, y_end = np.where(np.any(geo, axis=(0, 2)))[0].min(), np.where(np.any(geo, axis=(0, 2)))[0].max()
|
181 |
+
z_start, z_end = np.where(np.any(geo, axis=(0, 1)))[0].min(), np.where(np.any(geo, axis=(0, 1)))[0].max()
|
182 |
+
geo = geo[x_start:x_end, y_start:y_end, z_start:z_end]
|
183 |
+
|
184 |
+
point = center_select(mask_scan)
|
185 |
+
|
186 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
187 |
+
x_low = new_point[0] - geo.shape[0]//2
|
188 |
+
y_low = new_point[1] - geo.shape[1]//2
|
189 |
+
z_low = new_point[2] - geo.shape[2]//2
|
190 |
+
|
191 |
+
# paste small tumor geo into test sample
|
192 |
+
geo_mask[x_low:x_low+geo.shape[0], y_low:y_low+geo.shape[1], z_low:z_low+geo.shape[2]] += geo
|
193 |
+
|
194 |
+
geo_mask = geo_mask[enlarge_x//2:-enlarge_x//2, enlarge_y//2:-enlarge_y//2, enlarge_z//2:-enlarge_z//2]
|
195 |
+
# texture_map = texture_map[enlarge_x//2:-enlarge_x//2, enlarge_y//2:-enlarge_y//2, enlarge_z//2:-enlarge_z//2]
|
196 |
+
if ((tumor_type == 'medium') or (tumor_type == 'large')) and (organ_type == 'kidney'):
|
197 |
+
if random.random() > 0.5:
|
198 |
+
geo_mask = (geo_mask>=1)
|
199 |
+
else:
|
200 |
+
geo_mask = (geo_mask * mask_scan) >=1
|
201 |
+
else:
|
202 |
+
geo_mask = (geo_mask * mask_scan) >=1
|
203 |
+
|
204 |
+
return geo_mask
|
205 |
+
|
206 |
+
|
207 |
+
from .ldm.vq_gan_3d.model.vqgan import VQGAN
|
208 |
+
import matplotlib.pyplot as plt
|
209 |
+
import SimpleITK as sitk
|
210 |
+
from .ldm.ddpm import Unet3D, GaussianDiffusion, Tester
|
211 |
+
from hydra import initialize, compose
|
212 |
+
import torch
|
213 |
+
import yaml
|
214 |
+
def synt_model_prepare(device, vqgan_ckpt='TumorGeneration/model_weight/recon_96d4_all.ckpt', diffusion_ckpt='TumorGeneration/model_weight/', fold=0, organ='liver'):
|
215 |
+
with initialize(config_path="diffusion_config/"):
|
216 |
+
cfg=compose(config_name="ddpm.yaml")
|
217 |
+
print('diffusion_ckpt',diffusion_ckpt)
|
218 |
+
vqgan = VQGAN.load_from_checkpoint(vqgan_ckpt)
|
219 |
+
vqgan = vqgan.to(device)
|
220 |
+
vqgan.eval()
|
221 |
+
|
222 |
+
early_Unet3D = Unet3D(
|
223 |
+
dim=cfg.diffusion_img_size,
|
224 |
+
dim_mults=cfg.dim_mults,
|
225 |
+
channels=cfg.diffusion_num_channels,
|
226 |
+
out_dim=cfg.out_dim
|
227 |
+
).to(device)
|
228 |
+
|
229 |
+
early_diffusion = GaussianDiffusion(
|
230 |
+
early_Unet3D,
|
231 |
+
vqgan_ckpt= vqgan_ckpt, # cfg.vqgan_ckpt,
|
232 |
+
image_size=cfg.diffusion_img_size,
|
233 |
+
num_frames=cfg.diffusion_depth_size,
|
234 |
+
channels=cfg.diffusion_num_channels,
|
235 |
+
timesteps=4, # cfg.timesteps,
|
236 |
+
loss_type=cfg.loss_type,
|
237 |
+
device=device
|
238 |
+
).to(device)
|
239 |
+
|
240 |
+
noearly_Unet3D = Unet3D(
|
241 |
+
dim=cfg.diffusion_img_size,
|
242 |
+
dim_mults=cfg.dim_mults,
|
243 |
+
channels=cfg.diffusion_num_channels,
|
244 |
+
out_dim=cfg.out_dim
|
245 |
+
).to(device)
|
246 |
+
|
247 |
+
noearly_diffusion = GaussianDiffusion(
|
248 |
+
noearly_Unet3D,
|
249 |
+
vqgan_ckpt= vqgan_ckpt, # cfg.vqgan_ckpt,
|
250 |
+
image_size=cfg.diffusion_img_size,
|
251 |
+
num_frames=cfg.diffusion_depth_size,
|
252 |
+
channels=cfg.diffusion_num_channels,
|
253 |
+
timesteps=200, # cfg.timesteps,
|
254 |
+
loss_type=cfg.loss_type,
|
255 |
+
device=device
|
256 |
+
).to(device)
|
257 |
+
|
258 |
+
early_tester = Tester(early_diffusion)
|
259 |
+
# noearly_tester = Tester(noearly_diffusion)
|
260 |
+
early_tester.load(diffusion_ckpt+'diff_{}_fold{}_early.pt'.format(organ, fold), map_location=device)
|
261 |
+
# noearly_tester.load(diffusion_ckpt+'diff_liver_fold{}_noearly_t200.pt'.format(fold), map_location=device)
|
262 |
+
|
263 |
+
# early_checkpoint = torch.load(diffusion_ckpt+'diff_liver_fold{}_early.pt'.format(fold), map_location=device)
|
264 |
+
noearly_checkpoint = torch.load(diffusion_ckpt+'diff_{}_fold{}_noearly_t200.pt'.format(organ, fold), map_location=device)
|
265 |
+
# early_diffusion.load_state_dict(early_checkpoint['ema'])
|
266 |
+
noearly_diffusion.load_state_dict(noearly_checkpoint['ema'])
|
267 |
+
# early_sampler = DDIMSampler(early_diffusion, schedule="cosine")
|
268 |
+
noearly_sampler = DDIMSampler(noearly_diffusion, schedule="cosine")
|
269 |
+
# breakpoint()
|
270 |
+
return vqgan, early_tester, noearly_sampler
|
271 |
+
|
272 |
+
def synthesize_early_tumor(ct_volume, organ_mask, organ_type, vqgan, tester):
|
273 |
+
device=ct_volume.device
|
274 |
+
|
275 |
+
# generate tumor mask
|
276 |
+
tumor_types = ['tiny', 'small']
|
277 |
+
# tumor_probs = np.array([0.5, 0.5])
|
278 |
+
tumor_probs = np.array([0.2, 0.8])
|
279 |
+
total_tumor_mask = []
|
280 |
+
organ_mask_np = organ_mask.cpu().numpy()
|
281 |
+
with torch.no_grad():
|
282 |
+
# get model input
|
283 |
+
for bs in range(organ_mask_np.shape[0]):
|
284 |
+
synthetic_tumor_type = np.random.choice(tumor_types, p=tumor_probs.ravel())
|
285 |
+
tumor_mask = get_fixed_geo(organ_mask_np[bs,0], synthetic_tumor_type, organ_type)
|
286 |
+
total_tumor_mask.append(torch.from_numpy(tumor_mask)[None,:])
|
287 |
+
total_tumor_mask = torch.stack(total_tumor_mask, dim=0).to(dtype=torch.float32, device=device)
|
288 |
+
|
289 |
+
volume = ct_volume*2.0 - 1.0
|
290 |
+
mask = total_tumor_mask*2.0 - 1.0
|
291 |
+
mask_ = 1-total_tumor_mask
|
292 |
+
masked_volume = (volume*mask_).detach()
|
293 |
+
|
294 |
+
volume = volume.permute(0,1,-1,-3,-2)
|
295 |
+
masked_volume = masked_volume.permute(0,1,-1,-3,-2)
|
296 |
+
mask = mask.permute(0,1,-1,-3,-2)
|
297 |
+
|
298 |
+
# vqgan encoder inference
|
299 |
+
masked_volume_feat = vqgan.encode(masked_volume, quantize=False, include_embeddings=True)
|
300 |
+
masked_volume_feat = ((masked_volume_feat - vqgan.codebook.embeddings.min()) /
|
301 |
+
(vqgan.codebook.embeddings.max() - vqgan.codebook.embeddings.min())) * 2.0 - 1.0
|
302 |
+
|
303 |
+
cc = torch.nn.functional.interpolate(mask, size=masked_volume_feat.shape[-3:])
|
304 |
+
cond = torch.cat((masked_volume_feat, cc), dim=1)
|
305 |
+
|
306 |
+
# diffusion inference and decoder
|
307 |
+
tester.ema_model.eval()
|
308 |
+
sample = tester.ema_model.sample(batch_size=volume.shape[0], cond=cond)
|
309 |
+
|
310 |
+
# if organ_type == 'liver' or organ_type == 'kidney' :
|
311 |
+
|
312 |
+
mask_01 = torch.clamp((mask+1.0)/2.0, min=0.0, max=1.0)
|
313 |
+
sigma = np.random.uniform(0, 4) # (1, 2)
|
314 |
+
mask_01_np_blur = gaussian_filter(mask_01.cpu().numpy()*1.0, sigma=[0,0,sigma,sigma,sigma])
|
315 |
+
# mask_01_np_blur = mask_01_np_blur*mask_01.cpu().numpy()
|
316 |
+
|
317 |
+
volume_ = torch.clamp((volume+1.0)/2.0, min=0.0, max=1.0)
|
318 |
+
sample_ = torch.clamp((sample+1.0)/2.0, min=0.0, max=1.0)
|
319 |
+
|
320 |
+
mask_01_blur = torch.from_numpy(mask_01_np_blur).to(device=device)
|
321 |
+
final_volume_ = (1-mask_01_blur)*volume_ +mask_01_blur*sample_
|
322 |
+
final_volume_ = torch.clamp(final_volume_, min=0.0, max=1.0)
|
323 |
+
# elif organ_type == 'pancreas':
|
324 |
+
# final_volume_ = (sample+1.0)/2.0
|
325 |
+
final_volume_ = final_volume_.permute(0,1,-2,-1,-3)
|
326 |
+
organ_tumor_mask = torch.ones_like(organ_mask)
|
327 |
+
organ_tumor_mask[total_tumor_mask==1] = 2
|
328 |
+
|
329 |
+
return final_volume_, organ_tumor_mask
|
330 |
+
|
331 |
+
def synthesize_medium_tumor(ct_volume, organ_mask, organ_type, vqgan, sampler, ddim_ts=50):
|
332 |
+
device=ct_volume.device
|
333 |
+
|
334 |
+
# generate tumor mask
|
335 |
+
# tumor_types = ['large']
|
336 |
+
# tumor_probs = np.array([1.0])
|
337 |
+
total_tumor_mask = []
|
338 |
+
organ_mask_np = organ_mask.cpu().numpy()
|
339 |
+
with torch.no_grad():
|
340 |
+
# get model input
|
341 |
+
for bs in range(organ_mask_np.shape[0]):
|
342 |
+
# synthetic_tumor_type = np.random.choice(tumor_types, p=tumor_probs.ravel())
|
343 |
+
synthetic_tumor_type = 'medium'
|
344 |
+
tumor_mask = get_fixed_geo(organ_mask_np[bs,0], synthetic_tumor_type, organ_type)
|
345 |
+
total_tumor_mask.append(torch.from_numpy(tumor_mask)[None,:])
|
346 |
+
total_tumor_mask = torch.stack(total_tumor_mask, dim=0).to(dtype=torch.float32, device=device)
|
347 |
+
|
348 |
+
volume = ct_volume*2.0 - 1.0
|
349 |
+
mask = total_tumor_mask*2.0 - 1.0
|
350 |
+
mask_ = 1-total_tumor_mask
|
351 |
+
masked_volume = (volume*mask_).detach()
|
352 |
+
|
353 |
+
volume = volume.permute(0,1,-1,-3,-2)
|
354 |
+
masked_volume = masked_volume.permute(0,1,-1,-3,-2)
|
355 |
+
mask = mask.permute(0,1,-1,-3,-2)
|
356 |
+
|
357 |
+
# vqgan encoder inference
|
358 |
+
masked_volume_feat = vqgan.encode(masked_volume, quantize=False, include_embeddings=True)
|
359 |
+
masked_volume_feat = ((masked_volume_feat - vqgan.codebook.embeddings.min()) /
|
360 |
+
(vqgan.codebook.embeddings.max() - vqgan.codebook.embeddings.min())) * 2.0 - 1.0
|
361 |
+
|
362 |
+
cc = torch.nn.functional.interpolate(mask, size=masked_volume_feat.shape[-3:])
|
363 |
+
cond = torch.cat((masked_volume_feat, cc), dim=1)
|
364 |
+
|
365 |
+
# diffusion inference and decoder
|
366 |
+
shape = masked_volume_feat.shape[-4:]
|
367 |
+
samples_ddim, _ = sampler.sample(S=ddim_ts,
|
368 |
+
conditioning=cond,
|
369 |
+
batch_size=1,
|
370 |
+
shape=shape,
|
371 |
+
verbose=False)
|
372 |
+
samples_ddim = (((samples_ddim + 1.0) / 2.0) * (vqgan.codebook.embeddings.max() -
|
373 |
+
vqgan.codebook.embeddings.min())) + vqgan.codebook.embeddings.min()
|
374 |
+
|
375 |
+
sample = vqgan.decode(samples_ddim, quantize=True)
|
376 |
+
|
377 |
+
# if organ_type == 'liver' or organ_type == 'kidney':
|
378 |
+
# post-process
|
379 |
+
mask_01 = torch.clamp((mask+1.0)/2.0, min=0.0, max=1.0)
|
380 |
+
sigma = np.random.uniform(0, 4) # (1, 2)
|
381 |
+
mask_01_np_blur = gaussian_filter(mask_01.cpu().numpy()*1.0, sigma=[0,0,sigma,sigma,sigma])
|
382 |
+
# mask_01_np_blur = mask_01_np_blur*mask_01.cpu().numpy()
|
383 |
+
|
384 |
+
volume_ = torch.clamp((volume+1.0)/2.0, min=0.0, max=1.0)
|
385 |
+
sample_ = torch.clamp((sample+1.0)/2.0, min=0.0, max=1.0)
|
386 |
+
|
387 |
+
mask_01_blur = torch.from_numpy(mask_01_np_blur).to(device=device)
|
388 |
+
final_volume_ = (1-mask_01_blur)*volume_ +mask_01_blur*sample_
|
389 |
+
final_volume_ = torch.clamp(final_volume_, min=0.0, max=1.0)
|
390 |
+
# elif organ_type == 'pancreas':
|
391 |
+
# final_volume_ = (sample+1.0)/2.0
|
392 |
+
|
393 |
+
final_volume_ = final_volume_.permute(0,1,-2,-1,-3)
|
394 |
+
organ_tumor_mask = torch.ones_like(organ_mask)
|
395 |
+
organ_tumor_mask[total_tumor_mask==1] = 2
|
396 |
+
|
397 |
+
return final_volume_, organ_tumor_mask
|
398 |
+
|
399 |
+
def synthesize_large_tumor(ct_volume, organ_mask, organ_type, vqgan, sampler, ddim_ts=50):
|
400 |
+
device=ct_volume.device
|
401 |
+
|
402 |
+
# generate tumor mask
|
403 |
+
# tumor_types = ['large']
|
404 |
+
# tumor_probs = np.array([1.0])
|
405 |
+
total_tumor_mask = []
|
406 |
+
organ_mask_np = organ_mask.cpu().numpy()
|
407 |
+
with torch.no_grad():
|
408 |
+
# get model input
|
409 |
+
for bs in range(organ_mask_np.shape[0]):
|
410 |
+
# synthetic_tumor_type = np.random.choice(tumor_types, p=tumor_probs.ravel())
|
411 |
+
synthetic_tumor_type = 'large'
|
412 |
+
tumor_mask = get_fixed_geo(organ_mask_np[bs,0], synthetic_tumor_type, organ_type)
|
413 |
+
total_tumor_mask.append(torch.from_numpy(tumor_mask)[None,:])
|
414 |
+
total_tumor_mask = torch.stack(total_tumor_mask, dim=0).to(dtype=torch.float32, device=device)
|
415 |
+
|
416 |
+
volume = ct_volume*2.0 - 1.0
|
417 |
+
mask = total_tumor_mask*2.0 - 1.0
|
418 |
+
mask_ = 1-total_tumor_mask
|
419 |
+
masked_volume = (volume*mask_).detach()
|
420 |
+
|
421 |
+
volume = volume.permute(0,1,-1,-3,-2)
|
422 |
+
masked_volume = masked_volume.permute(0,1,-1,-3,-2)
|
423 |
+
mask = mask.permute(0,1,-1,-3,-2)
|
424 |
+
|
425 |
+
# vqgan encoder inference
|
426 |
+
masked_volume_feat = vqgan.encode(masked_volume, quantize=False, include_embeddings=True)
|
427 |
+
masked_volume_feat = ((masked_volume_feat - vqgan.codebook.embeddings.min()) /
|
428 |
+
(vqgan.codebook.embeddings.max() - vqgan.codebook.embeddings.min())) * 2.0 - 1.0
|
429 |
+
|
430 |
+
cc = torch.nn.functional.interpolate(mask, size=masked_volume_feat.shape[-3:])
|
431 |
+
cond = torch.cat((masked_volume_feat, cc), dim=1)
|
432 |
+
|
433 |
+
# diffusion inference and decoder
|
434 |
+
shape = masked_volume_feat.shape[-4:]
|
435 |
+
samples_ddim, _ = sampler.sample(S=ddim_ts,
|
436 |
+
conditioning=cond,
|
437 |
+
batch_size=1,
|
438 |
+
shape=shape,
|
439 |
+
verbose=False)
|
440 |
+
samples_ddim = (((samples_ddim + 1.0) / 2.0) * (vqgan.codebook.embeddings.max() -
|
441 |
+
vqgan.codebook.embeddings.min())) + vqgan.codebook.embeddings.min()
|
442 |
+
|
443 |
+
sample = vqgan.decode(samples_ddim, quantize=True)
|
444 |
+
|
445 |
+
# if organ_type == 'liver' or organ_type == 'kidney':
|
446 |
+
# post-process
|
447 |
+
mask_01 = torch.clamp((mask+1.0)/2.0, min=0.0, max=1.0)
|
448 |
+
sigma = np.random.uniform(0, 4) # (1, 2)
|
449 |
+
mask_01_np_blur = gaussian_filter(mask_01.cpu().numpy()*1.0, sigma=[0,0,sigma,sigma,sigma])
|
450 |
+
# mask_01_np_blur = mask_01_np_blur*mask_01.cpu().numpy()
|
451 |
+
|
452 |
+
volume_ = torch.clamp((volume+1.0)/2.0, min=0.0, max=1.0)
|
453 |
+
sample_ = torch.clamp((sample+1.0)/2.0, min=0.0, max=1.0)
|
454 |
+
|
455 |
+
mask_01_blur = torch.from_numpy(mask_01_np_blur).to(device=device)
|
456 |
+
final_volume_ = (1-mask_01_blur)*volume_ +mask_01_blur*sample_
|
457 |
+
final_volume_ = torch.clamp(final_volume_, min=0.0, max=1.0)
|
458 |
+
# elif organ_type == 'pancreas':
|
459 |
+
# final_volume_ = (sample+1.0)/2.0
|
460 |
+
|
461 |
+
final_volume_ = final_volume_.permute(0,1,-2,-1,-3)
|
462 |
+
organ_tumor_mask = torch.ones_like(organ_mask)
|
463 |
+
organ_tumor_mask[total_tumor_mask==1] = 2
|
464 |
+
|
465 |
+
return final_volume_, organ_tumor_mask
|
Generation_Pipeline_filter_all/syn_pancreas/TumorGeneration/utils_.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Tumor Generateion
|
2 |
+
import random
|
3 |
+
import cv2
|
4 |
+
import elasticdeform
|
5 |
+
import numpy as np
|
6 |
+
from scipy.ndimage import gaussian_filter
|
7 |
+
|
8 |
+
# Step 1: Random select (numbers) location for tumor.
|
9 |
+
def random_select(mask_scan):
|
10 |
+
# we first find z index and then sample point with z slice
|
11 |
+
z_start, z_end = np.where(np.any(mask_scan, axis=(0, 1)))[0][[0, -1]]
|
12 |
+
|
13 |
+
# we need to strict number z's position (0.3 - 0.7 in the middle of liver)
|
14 |
+
z = round(random.uniform(0.3, 0.7) * (z_end - z_start)) + z_start
|
15 |
+
|
16 |
+
liver_mask = mask_scan[..., z]
|
17 |
+
|
18 |
+
# erode the mask (we don't want the edge points)
|
19 |
+
kernel = np.ones((5,5), dtype=np.uint8)
|
20 |
+
liver_mask = cv2.erode(liver_mask, kernel, iterations=1)
|
21 |
+
|
22 |
+
coordinates = np.argwhere(liver_mask == 1)
|
23 |
+
random_index = np.random.randint(0, len(coordinates))
|
24 |
+
xyz = coordinates[random_index].tolist() # get x,y
|
25 |
+
xyz.append(z)
|
26 |
+
potential_points = xyz
|
27 |
+
|
28 |
+
return potential_points
|
29 |
+
|
30 |
+
# Step 2 : generate the ellipsoid
|
31 |
+
def get_ellipsoid(x, y, z):
|
32 |
+
""""
|
33 |
+
x, y, z is the radius of this ellipsoid in x, y, z direction respectly.
|
34 |
+
"""
|
35 |
+
sh = (4*x, 4*y, 4*z)
|
36 |
+
out = np.zeros(sh, int)
|
37 |
+
aux = np.zeros(sh)
|
38 |
+
radii = np.array([x, y, z])
|
39 |
+
com = np.array([2*x, 2*y, 2*z]) # center point
|
40 |
+
|
41 |
+
# calculate the ellipsoid
|
42 |
+
bboxl = np.floor(com-radii).clip(0,None).astype(int)
|
43 |
+
bboxh = (np.ceil(com+radii)+1).clip(None, sh).astype(int)
|
44 |
+
roi = out[tuple(map(slice,bboxl,bboxh))]
|
45 |
+
roiaux = aux[tuple(map(slice,bboxl,bboxh))]
|
46 |
+
logrid = *map(np.square,np.ogrid[tuple(
|
47 |
+
map(slice,(bboxl-com)/radii,(bboxh-com-1)/radii,1j*(bboxh-bboxl)))]),
|
48 |
+
dst = (1-sum(logrid)).clip(0,None)
|
49 |
+
mask = dst>roiaux
|
50 |
+
roi[mask] = 1
|
51 |
+
np.copyto(roiaux,dst,where=mask)
|
52 |
+
|
53 |
+
return out
|
54 |
+
|
55 |
+
def get_fixed_geo(mask_scan, tumor_type):
|
56 |
+
|
57 |
+
enlarge_x, enlarge_y, enlarge_z = 160, 160, 160
|
58 |
+
geo_mask = np.zeros((mask_scan.shape[0] + enlarge_x, mask_scan.shape[1] + enlarge_y, mask_scan.shape[2] + enlarge_z), dtype=np.int8)
|
59 |
+
tiny_radius, small_radius, medium_radius, large_radius = 4, 8, 16, 32
|
60 |
+
|
61 |
+
if tumor_type == 'tiny':
|
62 |
+
num_tumor = random.randint(3,10)
|
63 |
+
for _ in range(num_tumor):
|
64 |
+
# Tiny tumor
|
65 |
+
x = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
66 |
+
y = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
67 |
+
z = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
68 |
+
sigma = random.uniform(0.5,1)
|
69 |
+
|
70 |
+
geo = get_ellipsoid(x, y, z)
|
71 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
72 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
73 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
74 |
+
point = random_select(mask_scan)
|
75 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
76 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
77 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
78 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
79 |
+
|
80 |
+
# paste small tumor geo into test sample
|
81 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
82 |
+
|
83 |
+
if tumor_type == 'small':
|
84 |
+
num_tumor = random.randint(3,10)
|
85 |
+
for _ in range(num_tumor):
|
86 |
+
# Small tumor
|
87 |
+
x = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
88 |
+
y = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
89 |
+
z = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
90 |
+
sigma = random.randint(1, 2)
|
91 |
+
|
92 |
+
geo = get_ellipsoid(x, y, z)
|
93 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
94 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
95 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
96 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
97 |
+
point = random_select(mask_scan)
|
98 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
99 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
100 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
101 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
102 |
+
|
103 |
+
# paste small tumor geo into test sample
|
104 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
105 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
106 |
+
|
107 |
+
if tumor_type == 'medium':
|
108 |
+
num_tumor = random.randint(2, 5)
|
109 |
+
for _ in range(num_tumor):
|
110 |
+
# medium tumor
|
111 |
+
x = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
112 |
+
y = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
113 |
+
z = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
114 |
+
sigma = random.randint(3, 6)
|
115 |
+
|
116 |
+
geo = get_ellipsoid(x, y, z)
|
117 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
118 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
119 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
120 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
121 |
+
point = random_select(mask_scan)
|
122 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
123 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
124 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
125 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
126 |
+
|
127 |
+
# paste medium tumor geo into test sample
|
128 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
129 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
130 |
+
|
131 |
+
if tumor_type == 'large':
|
132 |
+
num_tumor = random.randint(1,3)
|
133 |
+
for _ in range(num_tumor):
|
134 |
+
# Large tumor
|
135 |
+
x = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
136 |
+
y = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
137 |
+
z = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
138 |
+
sigma = random.randint(5, 10)
|
139 |
+
|
140 |
+
geo = get_ellipsoid(x, y, z)
|
141 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
142 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
143 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
144 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
145 |
+
point = random_select(mask_scan)
|
146 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
147 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
148 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
149 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
150 |
+
|
151 |
+
# paste small tumor geo into test sample
|
152 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
153 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
154 |
+
|
155 |
+
if tumor_type == "mix":
|
156 |
+
# tiny
|
157 |
+
num_tumor = random.randint(3,10)
|
158 |
+
for _ in range(num_tumor):
|
159 |
+
# Tiny tumor
|
160 |
+
x = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
161 |
+
y = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
162 |
+
z = random.randint(int(0.75*tiny_radius), int(1.25*tiny_radius))
|
163 |
+
sigma = random.uniform(0.5,1)
|
164 |
+
|
165 |
+
geo = get_ellipsoid(x, y, z)
|
166 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
167 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
168 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
169 |
+
point = random_select(mask_scan)
|
170 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
171 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
172 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
173 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
174 |
+
|
175 |
+
# paste small tumor geo into test sample
|
176 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
177 |
+
|
178 |
+
# small
|
179 |
+
num_tumor = random.randint(5,10)
|
180 |
+
for _ in range(num_tumor):
|
181 |
+
# Small tumor
|
182 |
+
x = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
183 |
+
y = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
184 |
+
z = random.randint(int(0.75*small_radius), int(1.25*small_radius))
|
185 |
+
sigma = random.randint(1, 2)
|
186 |
+
|
187 |
+
geo = get_ellipsoid(x, y, z)
|
188 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
189 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
190 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
191 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
192 |
+
point = random_select(mask_scan)
|
193 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
194 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
195 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
196 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
197 |
+
|
198 |
+
# paste small tumor geo into test sample
|
199 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
200 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
201 |
+
|
202 |
+
# medium
|
203 |
+
num_tumor = random.randint(2, 5)
|
204 |
+
for _ in range(num_tumor):
|
205 |
+
# medium tumor
|
206 |
+
x = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
207 |
+
y = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
208 |
+
z = random.randint(int(0.75*medium_radius), int(1.25*medium_radius))
|
209 |
+
sigma = random.randint(3, 6)
|
210 |
+
|
211 |
+
geo = get_ellipsoid(x, y, z)
|
212 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
213 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
214 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
215 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
216 |
+
point = random_select(mask_scan)
|
217 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
218 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
219 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
220 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
221 |
+
|
222 |
+
# paste medium tumor geo into test sample
|
223 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
224 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
225 |
+
|
226 |
+
# large
|
227 |
+
num_tumor = random.randint(1,3)
|
228 |
+
for _ in range(num_tumor):
|
229 |
+
# Large tumor
|
230 |
+
x = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
231 |
+
y = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
232 |
+
z = random.randint(int(0.75*large_radius), int(1.25*large_radius))
|
233 |
+
sigma = random.randint(5, 10)
|
234 |
+
geo = get_ellipsoid(x, y, z)
|
235 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,1))
|
236 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(1,2))
|
237 |
+
geo = elasticdeform.deform_random_grid(geo, sigma=sigma, points=3, order=0, axis=(0,2))
|
238 |
+
# texture = get_texture((4*x, 4*y, 4*z))
|
239 |
+
point = random_select(mask_scan)
|
240 |
+
new_point = [point[0] + enlarge_x//2, point[1] + enlarge_y//2, point[2] + enlarge_z//2]
|
241 |
+
x_low, x_high = new_point[0] - geo.shape[0]//2, new_point[0] + geo.shape[0]//2
|
242 |
+
y_low, y_high = new_point[1] - geo.shape[1]//2, new_point[1] + geo.shape[1]//2
|
243 |
+
z_low, z_high = new_point[2] - geo.shape[2]//2, new_point[2] + geo.shape[2]//2
|
244 |
+
|
245 |
+
# paste small tumor geo into test sample
|
246 |
+
geo_mask[x_low:x_high, y_low:y_high, z_low:z_high] += geo
|
247 |
+
# texture_map[x_low:x_high, y_low:y_high, z_low:z_high] = texture
|
248 |
+
|
249 |
+
geo_mask = geo_mask[enlarge_x//2:-enlarge_x//2, enlarge_y//2:-enlarge_y//2, enlarge_z//2:-enlarge_z//2]
|
250 |
+
# texture_map = texture_map[enlarge_x//2:-enlarge_x//2, enlarge_y//2:-enlarge_y//2, enlarge_z//2:-enlarge_z//2]
|
251 |
+
geo_mask = (geo_mask * mask_scan) >=1
|
252 |
+
|
253 |
+
return geo_mask
|
254 |
+
|
255 |
+
|
256 |
+
def get_tumor(volume_scan, mask_scan, tumor_type):
|
257 |
+
tumor_mask = get_fixed_geo(mask_scan, tumor_type)
|
258 |
+
|
259 |
+
sigma = np.random.uniform(1, 2)
|
260 |
+
# difference = np.random.uniform(65, 145)
|
261 |
+
difference = 1
|
262 |
+
|
263 |
+
# blur the boundary
|
264 |
+
tumor_mask_blur = gaussian_filter(tumor_mask*1.0, sigma)
|
265 |
+
|
266 |
+
|
267 |
+
abnormally_full = volume_scan * (1 - mask_scan) + abnormally
|
268 |
+
abnormally_mask = mask_scan + geo_mask
|
269 |
+
|
270 |
+
return abnormally_full, abnormally_mask
|
271 |
+
|
272 |
+
def SynthesisTumor(volume_scan, mask_scan, tumor_type):
|
273 |
+
# for speed_generate_tumor, we only send the liver part into the generate program
|
274 |
+
x_start, x_end = np.where(np.any(mask_scan, axis=(1, 2)))[0][[0, -1]]
|
275 |
+
y_start, y_end = np.where(np.any(mask_scan, axis=(0, 2)))[0][[0, -1]]
|
276 |
+
z_start, z_end = np.where(np.any(mask_scan, axis=(0, 1)))[0][[0, -1]]
|
277 |
+
|
278 |
+
# shrink the boundary
|
279 |
+
x_start, x_end = max(0, x_start+1), min(mask_scan.shape[0], x_end-1)
|
280 |
+
y_start, y_end = max(0, y_start+1), min(mask_scan.shape[1], y_end-1)
|
281 |
+
z_start, z_end = max(0, z_start+1), min(mask_scan.shape[2], z_end-1)
|
282 |
+
|
283 |
+
ct_volume = volume_scan[x_start:x_end, y_start:y_end, z_start:z_end]
|
284 |
+
organ_mask = mask_scan[x_start:x_end, y_start:y_end, z_start:z_end]
|
285 |
+
|
286 |
+
# input texture shape: 420, 300, 320
|
287 |
+
# we need to cut it into the shape of liver_mask
|
288 |
+
# for examples, the liver_mask.shape = 286, 173, 46; we should change the texture shape
|
289 |
+
x_length, y_length, z_length = 64, 64, 64
|
290 |
+
crop_x = random.randint(x_start, x_end - x_length - 1) # random select the start point, -1 is to avoid boundary check
|
291 |
+
crop_y = random.randint(y_start, y_end - y_length - 1)
|
292 |
+
crop_z = random.randint(z_start, z_end - z_length - 1)
|
293 |
+
|
294 |
+
ct_volume, organ_tumor_mask = get_tumor(ct_volume, organ_mask, tumor_type)
|
295 |
+
volume_scan[x_start:x_end, y_start:y_end, z_start:z_end] = ct_volume
|
296 |
+
mask_scan[x_start:x_end, y_start:y_end, z_start:z_end] = organ_tumor_mask
|
297 |
+
|
298 |
+
return volume_scan, mask_scan
|
Generation_Pipeline_filter_all/syn_pancreas/healthy_pancreas_1k.txt
ADDED
@@ -0,0 +1,774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BDMAP_00004652
|
2 |
+
BDMAP_00002164
|
3 |
+
BDMAP_00000439
|
4 |
+
BDMAP_00004775
|
5 |
+
BDMAP_00001148
|
6 |
+
BDMAP_00003384
|
7 |
+
BDMAP_00003634
|
8 |
+
BDMAP_00000030
|
9 |
+
BDMAP_00005119
|
10 |
+
BDMAP_00003580
|
11 |
+
BDMAP_00000320
|
12 |
+
BDMAP_00002185
|
13 |
+
BDMAP_00002487
|
14 |
+
BDMAP_00002775
|
15 |
+
BDMAP_00000159
|
16 |
+
BDMAP_00004475
|
17 |
+
BDMAP_00004278
|
18 |
+
BDMAP_00004131
|
19 |
+
BDMAP_00000244
|
20 |
+
BDMAP_00001966
|
21 |
+
BDMAP_00000939
|
22 |
+
BDMAP_00003928
|
23 |
+
BDMAP_00003031
|
24 |
+
BDMAP_00000568
|
25 |
+
BDMAP_00001309
|
26 |
+
BDMAP_00004232
|
27 |
+
BDMAP_00004431
|
28 |
+
BDMAP_00001794
|
29 |
+
BDMAP_00001752
|
30 |
+
BDMAP_00004228
|
31 |
+
BDMAP_00002363
|
32 |
+
BDMAP_00001020
|
33 |
+
BDMAP_00002739
|
34 |
+
BDMAP_00004462
|
35 |
+
BDMAP_00003749
|
36 |
+
BDMAP_00002472
|
37 |
+
BDMAP_00003455
|
38 |
+
BDMAP_00003911
|
39 |
+
BDMAP_00003486
|
40 |
+
BDMAP_00001496
|
41 |
+
BDMAP_00004378
|
42 |
+
BDMAP_00002282
|
43 |
+
BDMAP_00001343
|
44 |
+
BDMAP_00001747
|
45 |
+
BDMAP_00004450
|
46 |
+
BDMAP_00000607
|
47 |
+
BDMAP_00000100
|
48 |
+
BDMAP_00001620
|
49 |
+
BDMAP_00004415
|
50 |
+
BDMAP_00004897
|
51 |
+
BDMAP_00001737
|
52 |
+
BDMAP_00000604
|
53 |
+
BDMAP_00004922
|
54 |
+
BDMAP_00004870
|
55 |
+
BDMAP_00002060
|
56 |
+
BDMAP_00003412
|
57 |
+
BDMAP_00004850
|
58 |
+
BDMAP_00000794
|
59 |
+
BDMAP_00000989
|
60 |
+
BDMAP_00000205
|
61 |
+
BDMAP_00003151
|
62 |
+
BDMAP_00001255
|
63 |
+
BDMAP_00000667
|
64 |
+
BDMAP_00003343
|
65 |
+
BDMAP_00001237
|
66 |
+
BDMAP_00000023
|
67 |
+
BDMAP_00003281
|
68 |
+
BDMAP_00000907
|
69 |
+
BDMAP_00000432
|
70 |
+
BDMAP_00001782
|
71 |
+
BDMAP_00002166
|
72 |
+
BDMAP_00004481
|
73 |
+
BDMAP_00003363
|
74 |
+
BDMAP_00001474
|
75 |
+
BDMAP_00001995
|
76 |
+
BDMAP_00002854
|
77 |
+
BDMAP_00003603
|
78 |
+
BDMAP_00001383
|
79 |
+
BDMAP_00002656
|
80 |
+
BDMAP_00004427
|
81 |
+
BDMAP_00001563
|
82 |
+
BDMAP_00001809
|
83 |
+
BDMAP_00002114
|
84 |
+
BDMAP_00000304
|
85 |
+
BDMAP_00001692
|
86 |
+
BDMAP_00001688
|
87 |
+
BDMAP_00001119
|
88 |
+
BDMAP_00000449
|
89 |
+
BDMAP_00004014
|
90 |
+
BDMAP_00002524
|
91 |
+
BDMAP_00000725
|
92 |
+
BDMAP_00000918
|
93 |
+
BDMAP_00000642
|
94 |
+
BDMAP_00001238
|
95 |
+
BDMAP_00002373
|
96 |
+
BDMAP_00002326
|
97 |
+
BDMAP_00004373
|
98 |
+
BDMAP_00003615
|
99 |
+
BDMAP_00003324
|
100 |
+
BDMAP_00002654
|
101 |
+
BDMAP_00002849
|
102 |
+
BDMAP_00003491
|
103 |
+
BDMAP_00002655
|
104 |
+
BDMAP_00002712
|
105 |
+
BDMAP_00001516
|
106 |
+
BDMAP_00000469
|
107 |
+
BDMAP_00001549
|
108 |
+
BDMAP_00000713
|
109 |
+
BDMAP_00000745
|
110 |
+
BDMAP_00000259
|
111 |
+
BDMAP_00003569
|
112 |
+
BDMAP_00005067
|
113 |
+
BDMAP_00004185
|
114 |
+
BDMAP_00003357
|
115 |
+
BDMAP_00002419
|
116 |
+
BDMAP_00002598
|
117 |
+
BDMAP_00002167
|
118 |
+
BDMAP_00000137
|
119 |
+
BDMAP_00003448
|
120 |
+
BDMAP_00000965
|
121 |
+
BDMAP_00000232
|
122 |
+
BDMAP_00004608
|
123 |
+
BDMAP_00003680
|
124 |
+
BDMAP_00000716
|
125 |
+
BDMAP_00002403
|
126 |
+
BDMAP_00004216
|
127 |
+
BDMAP_00001359
|
128 |
+
BDMAP_00004175
|
129 |
+
BDMAP_00002791
|
130 |
+
BDMAP_00002940
|
131 |
+
BDMAP_00000355
|
132 |
+
BDMAP_00004294
|
133 |
+
BDMAP_00001426
|
134 |
+
BDMAP_00001475
|
135 |
+
BDMAP_00002986
|
136 |
+
BDMAP_00002884
|
137 |
+
BDMAP_00000400
|
138 |
+
BDMAP_00002410
|
139 |
+
BDMAP_00000297
|
140 |
+
BDMAP_00001636
|
141 |
+
BDMAP_00005113
|
142 |
+
BDMAP_00004074
|
143 |
+
BDMAP_00002333
|
144 |
+
BDMAP_00003976
|
145 |
+
BDMAP_00002383
|
146 |
+
BDMAP_00000161
|
147 |
+
BDMAP_00001212
|
148 |
+
BDMAP_00000366
|
149 |
+
BDMAP_00003070
|
150 |
+
BDMAP_00003943
|
151 |
+
BDMAP_00003930
|
152 |
+
BDMAP_00003164
|
153 |
+
BDMAP_00001906
|
154 |
+
BDMAP_00002889
|
155 |
+
BDMAP_00004163
|
156 |
+
BDMAP_00001456
|
157 |
+
BDMAP_00003972
|
158 |
+
BDMAP_00004586
|
159 |
+
BDMAP_00000626
|
160 |
+
BDMAP_00001095
|
161 |
+
BDMAP_00000532
|
162 |
+
BDMAP_00003377
|
163 |
+
BDMAP_00003225
|
164 |
+
BDMAP_00001289
|
165 |
+
BDMAP_00001275
|
166 |
+
BDMAP_00004509
|
167 |
+
BDMAP_00000998
|
168 |
+
BDMAP_00000836
|
169 |
+
BDMAP_00001015
|
170 |
+
BDMAP_00004650
|
171 |
+
BDMAP_00005186
|
172 |
+
BDMAP_00000608
|
173 |
+
BDMAP_00003898
|
174 |
+
BDMAP_00002696
|
175 |
+
BDMAP_00003560
|
176 |
+
BDMAP_00004578
|
177 |
+
BDMAP_00000828
|
178 |
+
BDMAP_00000690
|
179 |
+
BDMAP_00003564
|
180 |
+
BDMAP_00005174
|
181 |
+
BDMAP_00000132
|
182 |
+
BDMAP_00005105
|
183 |
+
BDMAP_00000902
|
184 |
+
BDMAP_00003947
|
185 |
+
BDMAP_00002184
|
186 |
+
BDMAP_00001785
|
187 |
+
BDMAP_00002361
|
188 |
+
BDMAP_00003255
|
189 |
+
BDMAP_00000971
|
190 |
+
BDMAP_00003493
|
191 |
+
BDMAP_00002267
|
192 |
+
BDMAP_00005154
|
193 |
+
BDMAP_00000982
|
194 |
+
BDMAP_00005157
|
195 |
+
BDMAP_00004384
|
196 |
+
BDMAP_00003063
|
197 |
+
BDMAP_00001982
|
198 |
+
BDMAP_00002273
|
199 |
+
BDMAP_00001102
|
200 |
+
BDMAP_00002689
|
201 |
+
BDMAP_00000034
|
202 |
+
BDMAP_00001514
|
203 |
+
BDMAP_00005081
|
204 |
+
BDMAP_00001786
|
205 |
+
BDMAP_00004033
|
206 |
+
BDMAP_00004457
|
207 |
+
BDMAP_00000710
|
208 |
+
BDMAP_00001198
|
209 |
+
BDMAP_00004479
|
210 |
+
BDMAP_00000873
|
211 |
+
BDMAP_00000362
|
212 |
+
BDMAP_00004616
|
213 |
+
BDMAP_00003128
|
214 |
+
BDMAP_00001607
|
215 |
+
BDMAP_00004104
|
216 |
+
BDMAP_00001517
|
217 |
+
BDMAP_00004639
|
218 |
+
BDMAP_00005170
|
219 |
+
BDMAP_00002305
|
220 |
+
BDMAP_00004746
|
221 |
+
BDMAP_00003333
|
222 |
+
BDMAP_00001807
|
223 |
+
BDMAP_00004579
|
224 |
+
BDMAP_00002260
|
225 |
+
BDMAP_00004416
|
226 |
+
BDMAP_00003932
|
227 |
+
BDMAP_00001316
|
228 |
+
BDMAP_00003411
|
229 |
+
BDMAP_00000839
|
230 |
+
BDMAP_00004738
|
231 |
+
BDMAP_00001438
|
232 |
+
BDMAP_00003435
|
233 |
+
BDMAP_00001697
|
234 |
+
BDMAP_00001911
|
235 |
+
BDMAP_00001735
|
236 |
+
BDMAP_00002902
|
237 |
+
BDMAP_00001834
|
238 |
+
BDMAP_00000069
|
239 |
+
BDMAP_00004066
|
240 |
+
BDMAP_00000434
|
241 |
+
BDMAP_00004744
|
242 |
+
BDMAP_00000347
|
243 |
+
BDMAP_00001246
|
244 |
+
BDMAP_00003150
|
245 |
+
BDMAP_00003957
|
246 |
+
BDMAP_00001768
|
247 |
+
BDMAP_00002663
|
248 |
+
BDMAP_00004147
|
249 |
+
BDMAP_00003510
|
250 |
+
BDMAP_00002242
|
251 |
+
BDMAP_00005016
|
252 |
+
BDMAP_00002275
|
253 |
+
BDMAP_00001924
|
254 |
+
BDMAP_00002214
|
255 |
+
BDMAP_00002529
|
256 |
+
BDMAP_00000562
|
257 |
+
BDMAP_00000122
|
258 |
+
BDMAP_00002707
|
259 |
+
BDMAP_00000874
|
260 |
+
BDMAP_00000176
|
261 |
+
BDMAP_00002804
|
262 |
+
BDMAP_00005005
|
263 |
+
BDMAP_00001422
|
264 |
+
BDMAP_00005017
|
265 |
+
BDMAP_00000653
|
266 |
+
BDMAP_00002609
|
267 |
+
BDMAP_00003327
|
268 |
+
BDMAP_00002484
|
269 |
+
BDMAP_00004673
|
270 |
+
BDMAP_00004493
|
271 |
+
BDMAP_00003740
|
272 |
+
BDMAP_00002271
|
273 |
+
BDMAP_00002742
|
274 |
+
BDMAP_00002826
|
275 |
+
BDMAP_00001035
|
276 |
+
BDMAP_00002068
|
277 |
+
BDMAP_00003815
|
278 |
+
BDMAP_00003052
|
279 |
+
BDMAP_00004499
|
280 |
+
BDMAP_00002065
|
281 |
+
BDMAP_00001025
|
282 |
+
BDMAP_00004888
|
283 |
+
BDMAP_00002592
|
284 |
+
BDMAP_00004030
|
285 |
+
BDMAP_00001024
|
286 |
+
BDMAP_00002041
|
287 |
+
BDMAP_00002807
|
288 |
+
BDMAP_00002751
|
289 |
+
BDMAP_00003272
|
290 |
+
BDMAP_00004600
|
291 |
+
BDMAP_00004154
|
292 |
+
BDMAP_00003774
|
293 |
+
BDMAP_00000948
|
294 |
+
BDMAP_00002173
|
295 |
+
BDMAP_00004510
|
296 |
+
BDMAP_00000104
|
297 |
+
BDMAP_00004374
|
298 |
+
BDMAP_00000429
|
299 |
+
BDMAP_00004420
|
300 |
+
BDMAP_00001853
|
301 |
+
BDMAP_00003600
|
302 |
+
BDMAP_00002349
|
303 |
+
BDMAP_00001863
|
304 |
+
BDMAP_00004830
|
305 |
+
BDMAP_00002981
|
306 |
+
BDMAP_00001941
|
307 |
+
BDMAP_00001128
|
308 |
+
BDMAP_00005151
|
309 |
+
BDMAP_00003890
|
310 |
+
BDMAP_00003640
|
311 |
+
BDMAP_00004257
|
312 |
+
BDMAP_00004943
|
313 |
+
BDMAP_00001068
|
314 |
+
BDMAP_00001305
|
315 |
+
BDMAP_00000414
|
316 |
+
BDMAP_00000465
|
317 |
+
BDMAP_00003727
|
318 |
+
BDMAP_00002199
|
319 |
+
BDMAP_00001769
|
320 |
+
BDMAP_00004187
|
321 |
+
BDMAP_00001891
|
322 |
+
BDMAP_00000980
|
323 |
+
BDMAP_00003923
|
324 |
+
BDMAP_00000942
|
325 |
+
BDMAP_00001114
|
326 |
+
BDMAP_00001602
|
327 |
+
BDMAP_00002845
|
328 |
+
BDMAP_00003178
|
329 |
+
BDMAP_00003409
|
330 |
+
BDMAP_00001562
|
331 |
+
BDMAP_00002909
|
332 |
+
BDMAP_00003808
|
333 |
+
BDMAP_00001169
|
334 |
+
BDMAP_00001104
|
335 |
+
BDMAP_00001483
|
336 |
+
BDMAP_00005009
|
337 |
+
BDMAP_00001957
|
338 |
+
BDMAP_00003153
|
339 |
+
BDMAP_00001444
|
340 |
+
BDMAP_00000851
|
341 |
+
BDMAP_00005191
|
342 |
+
BDMAP_00000687
|
343 |
+
BDMAP_00003722
|
344 |
+
BDMAP_00003330
|
345 |
+
BDMAP_00002347
|
346 |
+
BDMAP_00002955
|
347 |
+
BDMAP_00001089
|
348 |
+
BDMAP_00004529
|
349 |
+
BDMAP_00003268
|
350 |
+
BDMAP_00001522
|
351 |
+
BDMAP_00001502
|
352 |
+
BDMAP_00000240
|
353 |
+
BDMAP_00004867
|
354 |
+
BDMAP_00000480
|
355 |
+
BDMAP_00000452
|
356 |
+
BDMAP_00002918
|
357 |
+
BDMAP_00002953
|
358 |
+
BDMAP_00002039
|
359 |
+
BDMAP_00000889
|
360 |
+
BDMAP_00002746
|
361 |
+
BDMAP_00003608
|
362 |
+
BDMAP_00003664
|
363 |
+
BDMAP_00003299
|
364 |
+
BDMAP_00001445
|
365 |
+
BDMAP_00000113
|
366 |
+
BDMAP_00001705
|
367 |
+
BDMAP_00000044
|
368 |
+
BDMAP_00003513
|
369 |
+
BDMAP_00001261
|
370 |
+
BDMAP_00004990
|
371 |
+
BDMAP_00003143
|
372 |
+
BDMAP_00003111
|
373 |
+
BDMAP_00002319
|
374 |
+
BDMAP_00004664
|
375 |
+
BDMAP_00003717
|
376 |
+
BDMAP_00004717
|
377 |
+
BDMAP_00004745
|
378 |
+
BDMAP_00000671
|
379 |
+
BDMAP_00002990
|
380 |
+
BDMAP_00004901
|
381 |
+
BDMAP_00002545
|
382 |
+
BDMAP_00004980
|
383 |
+
BDMAP_00000913
|
384 |
+
BDMAP_00000437
|
385 |
+
BDMAP_00002864
|
386 |
+
BDMAP_00000364
|
387 |
+
BDMAP_00004195
|
388 |
+
BDMAP_00000162
|
389 |
+
BDMAP_00002840
|
390 |
+
BDMAP_00000233
|
391 |
+
BDMAP_00002744
|
392 |
+
BDMAP_00001218
|
393 |
+
BDMAP_00002289
|
394 |
+
BDMAP_00000229
|
395 |
+
BDMAP_00005114
|
396 |
+
BDMAP_00000279
|
397 |
+
BDMAP_00003832
|
398 |
+
BDMAP_00000241
|
399 |
+
BDMAP_00002251
|
400 |
+
BDMAP_00001676
|
401 |
+
BDMAP_00001635
|
402 |
+
BDMAP_00003444
|
403 |
+
BDMAP_00002265
|
404 |
+
BDMAP_00002498
|
405 |
+
BDMAP_00001209
|
406 |
+
BDMAP_00001138
|
407 |
+
BDMAP_00002407
|
408 |
+
BDMAP_00003798
|
409 |
+
BDMAP_00001325
|
410 |
+
BDMAP_00002631
|
411 |
+
BDMAP_00004304
|
412 |
+
BDMAP_00001078
|
413 |
+
BDMAP_00002562
|
414 |
+
BDMAP_00003576
|
415 |
+
BDMAP_00001977
|
416 |
+
BDMAP_00002396
|
417 |
+
BDMAP_00001333
|
418 |
+
BDMAP_00004925
|
419 |
+
BDMAP_00004903
|
420 |
+
BDMAP_00000273
|
421 |
+
BDMAP_00000571
|
422 |
+
BDMAP_00001027
|
423 |
+
BDMAP_00000149
|
424 |
+
BDMAP_00001962
|
425 |
+
BDMAP_00003481
|
426 |
+
BDMAP_00001256
|
427 |
+
BDMAP_00000871
|
428 |
+
BDMAP_00000926
|
429 |
+
BDMAP_00000572
|
430 |
+
BDMAP_00004558
|
431 |
+
BDMAP_00000435
|
432 |
+
BDMAP_00000837
|
433 |
+
BDMAP_00003713
|
434 |
+
BDMAP_00002875
|
435 |
+
BDMAP_00004645
|
436 |
+
BDMAP_00001711
|
437 |
+
BDMAP_00001296
|
438 |
+
BDMAP_00002648
|
439 |
+
BDMAP_00004561
|
440 |
+
BDMAP_00002318
|
441 |
+
BDMAP_00001835
|
442 |
+
BDMAP_00003524
|
443 |
+
BDMAP_00002959
|
444 |
+
BDMAP_00002422
|
445 |
+
BDMAP_00004597
|
446 |
+
BDMAP_00000487
|
447 |
+
BDMAP_00002359
|
448 |
+
BDMAP_00005001
|
449 |
+
BDMAP_00004817
|
450 |
+
BDMAP_00001539
|
451 |
+
BDMAP_00002936
|
452 |
+
BDMAP_00002719
|
453 |
+
BDMAP_00005167
|
454 |
+
BDMAP_00001265
|
455 |
+
BDMAP_00001471
|
456 |
+
BDMAP_00001511
|
457 |
+
BDMAP_00005139
|
458 |
+
BDMAP_00002426
|
459 |
+
BDMAP_00002288
|
460 |
+
BDMAP_00004808
|
461 |
+
BDMAP_00002085
|
462 |
+
BDMAP_00004435
|
463 |
+
BDMAP_00000319
|
464 |
+
BDMAP_00003614
|
465 |
+
BDMAP_00001109
|
466 |
+
BDMAP_00000331
|
467 |
+
BDMAP_00004491
|
468 |
+
BDMAP_00002440
|
469 |
+
BDMAP_00003373
|
470 |
+
BDMAP_00005065
|
471 |
+
BDMAP_00005006
|
472 |
+
BDMAP_00002509
|
473 |
+
BDMAP_00003973
|
474 |
+
BDMAP_00004417
|
475 |
+
BDMAP_00000935
|
476 |
+
BDMAP_00004624
|
477 |
+
BDMAP_00003364
|
478 |
+
BDMAP_00005085
|
479 |
+
BDMAP_00003073
|
480 |
+
BDMAP_00002730
|
481 |
+
BDMAP_00004825
|
482 |
+
BDMAP_00000039
|
483 |
+
BDMAP_00004615
|
484 |
+
BDMAP_00003736
|
485 |
+
BDMAP_00005097
|
486 |
+
BDMAP_00003074
|
487 |
+
BDMAP_00000662
|
488 |
+
BDMAP_00001122
|
489 |
+
BDMAP_00002252
|
490 |
+
BDMAP_00001396
|
491 |
+
BDMAP_00004011
|
492 |
+
BDMAP_00004981
|
493 |
+
BDMAP_00004165
|
494 |
+
BDMAP_00003920
|
495 |
+
BDMAP_00001215
|
496 |
+
BDMAP_00003867
|
497 |
+
BDMAP_00000923
|
498 |
+
BDMAP_00002626
|
499 |
+
BDMAP_00003315
|
500 |
+
BDMAP_00000660
|
501 |
+
BDMAP_00000329
|
502 |
+
BDMAP_00004508
|
503 |
+
BDMAP_00001518
|
504 |
+
BDMAP_00003849
|
505 |
+
BDMAP_00003897
|
506 |
+
BDMAP_00003300
|
507 |
+
BDMAP_00002253
|
508 |
+
BDMAP_00003514
|
509 |
+
BDMAP_00000117
|
510 |
+
BDMAP_00002421
|
511 |
+
BDMAP_00001413
|
512 |
+
BDMAP_00004328
|
513 |
+
BDMAP_00001130
|
514 |
+
BDMAP_00000043
|
515 |
+
BDMAP_00001410
|
516 |
+
BDMAP_00000245
|
517 |
+
BDMAP_00004117
|
518 |
+
BDMAP_00002401
|
519 |
+
BDMAP_00003857
|
520 |
+
BDMAP_00000921
|
521 |
+
BDMAP_00000138
|
522 |
+
BDMAP_00003113
|
523 |
+
BDMAP_00003358
|
524 |
+
BDMAP_00002099
|
525 |
+
BDMAP_00004016
|
526 |
+
BDMAP_00003439
|
527 |
+
BDMAP_00002152
|
528 |
+
BDMAP_00003767
|
529 |
+
BDMAP_00001598
|
530 |
+
BDMAP_00003482
|
531 |
+
BDMAP_00003520
|
532 |
+
BDMAP_00002075
|
533 |
+
BDMAP_00000987
|
534 |
+
BDMAP_00003946
|
535 |
+
BDMAP_00005160
|
536 |
+
BDMAP_00001286
|
537 |
+
BDMAP_00003359
|
538 |
+
BDMAP_00002661
|
539 |
+
BDMAP_00004704
|
540 |
+
BDMAP_00003994
|
541 |
+
BDMAP_00002226
|
542 |
+
BDMAP_00000968
|
543 |
+
BDMAP_00003556
|
544 |
+
BDMAP_00003236
|
545 |
+
BDMAP_00001791
|
546 |
+
BDMAP_00004712
|
547 |
+
BDMAP_00001077
|
548 |
+
BDMAP_00003955
|
549 |
+
BDMAP_00002479
|
550 |
+
BDMAP_00001865
|
551 |
+
BDMAP_00001059
|
552 |
+
BDMAP_00002704
|
553 |
+
BDMAP_00000656
|
554 |
+
BDMAP_00001379
|
555 |
+
BDMAP_00000883
|
556 |
+
BDMAP_00002856
|
557 |
+
BDMAP_00004199
|
558 |
+
BDMAP_00001200
|
559 |
+
BDMAP_00005083
|
560 |
+
BDMAP_00004552
|
561 |
+
BDMAP_00000616
|
562 |
+
BDMAP_00004834
|
563 |
+
BDMAP_00004815
|
564 |
+
BDMAP_00001826
|
565 |
+
BDMAP_00000615
|
566 |
+
BDMAP_00001045
|
567 |
+
BDMAP_00002695
|
568 |
+
BDMAP_00004017
|
569 |
+
BDMAP_00002103
|
570 |
+
BDMAP_00002057
|
571 |
+
BDMAP_00004620
|
572 |
+
BDMAP_00000128
|
573 |
+
BDMAP_00001185
|
574 |
+
BDMAP_00002612
|
575 |
+
BDMAP_00005073
|
576 |
+
BDMAP_00001753
|
577 |
+
BDMAP_00004196
|
578 |
+
BDMAP_00004281
|
579 |
+
BDMAP_00002717
|
580 |
+
BDMAP_00000263
|
581 |
+
BDMAP_00004103
|
582 |
+
BDMAP_00003381
|
583 |
+
BDMAP_00001093
|
584 |
+
BDMAP_00000373
|
585 |
+
BDMAP_00000881
|
586 |
+
BDMAP_00002230
|
587 |
+
BDMAP_00001707
|
588 |
+
BDMAP_00002476
|
589 |
+
BDMAP_00003294
|
590 |
+
BDMAP_00004482
|
591 |
+
BDMAP_00003267
|
592 |
+
BDMAP_00002710
|
593 |
+
BDMAP_00002451
|
594 |
+
BDMAP_00001270
|
595 |
+
BDMAP_00004878
|
596 |
+
BDMAP_00001784
|
597 |
+
BDMAP_00001281
|
598 |
+
BDMAP_00002283
|
599 |
+
BDMAP_00001183
|
600 |
+
BDMAP_00001945
|
601 |
+
BDMAP_00004604
|
602 |
+
BDMAP_00000413
|
603 |
+
BDMAP_00003506
|
604 |
+
BDMAP_00002458
|
605 |
+
BDMAP_00000977
|
606 |
+
BDMAP_00000833
|
607 |
+
BDMAP_00001055
|
608 |
+
BDMAP_00002495
|
609 |
+
BDMAP_00000887
|
610 |
+
BDMAP_00002496
|
611 |
+
BDMAP_00002942
|
612 |
+
BDMAP_00000574
|
613 |
+
BDMAP_00001868
|
614 |
+
BDMAP_00000547
|
615 |
+
BDMAP_00001230
|
616 |
+
BDMAP_00003762
|
617 |
+
BDMAP_00003971
|
618 |
+
BDMAP_00000321
|
619 |
+
BDMAP_00004876
|
620 |
+
BDMAP_00003833
|
621 |
+
BDMAP_00003461
|
622 |
+
BDMAP_00003301
|
623 |
+
BDMAP_00002846
|
624 |
+
BDMAP_00002582
|
625 |
+
BDMAP_00001710
|
626 |
+
BDMAP_00001487
|
627 |
+
BDMAP_00000936
|
628 |
+
BDMAP_00004121
|
629 |
+
BDMAP_00004459
|
630 |
+
BDMAP_00000219
|
631 |
+
BDMAP_00000091
|
632 |
+
BDMAP_00001283
|
633 |
+
BDMAP_00000084
|
634 |
+
BDMAP_00000516
|
635 |
+
BDMAP_00004250
|
636 |
+
BDMAP_00001732
|
637 |
+
BDMAP_00003694
|
638 |
+
BDMAP_00004031
|
639 |
+
BDMAP_00001557
|
640 |
+
BDMAP_00002437
|
641 |
+
BDMAP_00002933
|
642 |
+
BDMAP_00000264
|
643 |
+
BDMAP_00005099
|
644 |
+
BDMAP_00004296
|
645 |
+
BDMAP_00001917
|
646 |
+
BDMAP_00003252
|
647 |
+
BDMAP_00004389
|
648 |
+
BDMAP_00002463
|
649 |
+
BDMAP_00004253
|
650 |
+
BDMAP_00004910
|
651 |
+
BDMAP_00003172
|
652 |
+
BDMAP_00001624
|
653 |
+
BDMAP_00003484
|
654 |
+
BDMAP_00001907
|
655 |
+
BDMAP_00003952
|
656 |
+
BDMAP_00002653
|
657 |
+
BDMAP_00000368
|
658 |
+
BDMAP_00000569
|
659 |
+
BDMAP_00004995
|
660 |
+
BDMAP_00003956
|
661 |
+
BDMAP_00003497
|
662 |
+
BDMAP_00003058
|
663 |
+
BDMAP_00000552
|
664 |
+
BDMAP_00000481
|
665 |
+
BDMAP_00000805
|
666 |
+
BDMAP_00003002
|
667 |
+
BDMAP_00000698
|
668 |
+
BDMAP_00004783
|
669 |
+
BDMAP_00001324
|
670 |
+
BDMAP_00002133
|
671 |
+
BDMAP_00005120
|
672 |
+
BDMAP_00003581
|
673 |
+
BDMAP_00004890
|
674 |
+
BDMAP_00001533
|
675 |
+
BDMAP_00004039
|
676 |
+
BDMAP_00000190
|
677 |
+
BDMAP_00004028
|
678 |
+
BDMAP_00004130
|
679 |
+
BDMAP_00001370
|
680 |
+
BDMAP_00002805
|
681 |
+
BDMAP_00001397
|
682 |
+
BDMAP_00001126
|
683 |
+
BDMAP_00001875
|
684 |
+
BDMAP_00005130
|
685 |
+
BDMAP_00003361
|
686 |
+
BDMAP_00002485
|
687 |
+
BDMAP_00001273
|
688 |
+
BDMAP_00000582
|
689 |
+
BDMAP_00003672
|
690 |
+
BDMAP_00000778
|
691 |
+
BDMAP_00002841
|
692 |
+
BDMAP_00001242
|
693 |
+
BDMAP_00000345
|
694 |
+
BDMAP_00000036
|
695 |
+
BDMAP_00003996
|
696 |
+
BDMAP_00003701
|
697 |
+
BDMAP_00003425
|
698 |
+
BDMAP_00001656
|
699 |
+
BDMAP_00001802
|
700 |
+
BDMAP_00001420
|
701 |
+
BDMAP_00003752
|
702 |
+
BDMAP_00002924
|
703 |
+
BDMAP_00003202
|
704 |
+
BDMAP_00000831
|
705 |
+
BDMAP_00003392
|
706 |
+
BDMAP_00002022
|
707 |
+
BDMAP_00001223
|
708 |
+
BDMAP_00003457
|
709 |
+
BDMAP_00001236
|
710 |
+
BDMAP_00000810
|
711 |
+
BDMAP_00004676
|
712 |
+
BDMAP_00003847
|
713 |
+
BDMAP_00001225
|
714 |
+
BDMAP_00005168
|
715 |
+
BDMAP_00004113
|
716 |
+
BDMAP_00002828
|
717 |
+
BDMAP_00004087
|
718 |
+
BDMAP_00004407
|
719 |
+
BDMAP_00002748
|
720 |
+
BDMAP_00003516
|
721 |
+
BDMAP_00004395
|
722 |
+
BDMAP_00001985
|
723 |
+
BDMAP_00001171
|
724 |
+
BDMAP_00000101
|
725 |
+
BDMAP_00002117
|
726 |
+
BDMAP_00001434
|
727 |
+
BDMAP_00000139
|
728 |
+
BDMAP_00002465
|
729 |
+
BDMAP_00001251
|
730 |
+
BDMAP_00001908
|
731 |
+
BDMAP_00002354
|
732 |
+
BDMAP_00002776
|
733 |
+
BDMAP_00004887
|
734 |
+
BDMAP_00000066
|
735 |
+
BDMAP_00003549
|
736 |
+
BDMAP_00000812
|
737 |
+
BDMAP_00000353
|
738 |
+
BDMAP_00004894
|
739 |
+
BDMAP_00004956
|
740 |
+
BDMAP_00002871
|
741 |
+
BDMAP_00004764
|
742 |
+
BDMAP_00004551
|
743 |
+
BDMAP_00002404
|
744 |
+
BDMAP_00000059
|
745 |
+
BDMAP_00002017
|
746 |
+
BDMAP_00003558
|
747 |
+
BDMAP_00004065
|
748 |
+
BDMAP_00003406
|
749 |
+
BDMAP_00002471
|
750 |
+
BDMAP_00000941
|
751 |
+
BDMAP_00003109
|
752 |
+
BDMAP_00000511
|
753 |
+
BDMAP_00000826
|
754 |
+
BDMAP_00004839
|
755 |
+
BDMAP_00004671
|
756 |
+
BDMAP_00002930
|
757 |
+
BDMAP_00004331
|
758 |
+
BDMAP_00001664
|
759 |
+
BDMAP_00001001
|
760 |
+
BDMAP_00001766
|
761 |
+
BDMAP_00003827
|
762 |
+
BDMAP_00001258
|
763 |
+
BDMAP_00001892
|
764 |
+
BDMAP_00000062
|
765 |
+
BDMAP_00000867
|
766 |
+
BDMAP_00002803
|
767 |
+
BDMAP_00000285
|
768 |
+
BDMAP_00001647
|
769 |
+
BDMAP_00005077
|
770 |
+
BDMAP_00000152
|
771 |
+
BDMAP_00000709
|
772 |
+
BDMAP_00002172
|
773 |
+
BDMAP_00004148
|
774 |
+
BDMAP_00001010
|
Generation_Pipeline_filter_all/syn_pancreas/requirements.txt
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.1.0
|
2 |
+
accelerate==0.11.0
|
3 |
+
aiohttp==3.8.1
|
4 |
+
aiosignal==1.2.0
|
5 |
+
antlr4-python3-runtime==4.9.3
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==21.4.0
|
8 |
+
autopep8==1.6.0
|
9 |
+
cachetools==5.2.0
|
10 |
+
certifi==2022.6.15
|
11 |
+
charset-normalizer==2.0.12
|
12 |
+
click==8.1.3
|
13 |
+
cycler==0.11.0
|
14 |
+
Deprecated==1.2.13
|
15 |
+
docker-pycreds==0.4.0
|
16 |
+
einops==0.4.1
|
17 |
+
einops-exts==0.0.3
|
18 |
+
ema-pytorch==0.0.8
|
19 |
+
fonttools==4.34.4
|
20 |
+
frozenlist==1.3.0
|
21 |
+
fsspec==2022.5.0
|
22 |
+
ftfy==6.1.1
|
23 |
+
future==0.18.2
|
24 |
+
gitdb==4.0.9
|
25 |
+
GitPython==3.1.27
|
26 |
+
google-auth==2.9.0
|
27 |
+
google-auth-oauthlib==0.4.6
|
28 |
+
grpcio==1.47.0
|
29 |
+
h5py==3.7.0
|
30 |
+
humanize==4.2.2
|
31 |
+
hydra-core==1.2.0
|
32 |
+
idna==3.3
|
33 |
+
imageio==2.19.3
|
34 |
+
imageio-ffmpeg==0.4.7
|
35 |
+
importlib-metadata==4.12.0
|
36 |
+
importlib-resources==5.9.0
|
37 |
+
joblib==1.1.0
|
38 |
+
kiwisolver==1.4.3
|
39 |
+
lxml==4.9.1
|
40 |
+
Markdown==3.3.7
|
41 |
+
matplotlib==3.5.2
|
42 |
+
multidict==6.0.2
|
43 |
+
networkx==2.8.5
|
44 |
+
nibabel==4.0.1
|
45 |
+
nilearn==0.9.1
|
46 |
+
numpy==1.23.0
|
47 |
+
oauthlib==3.2.0
|
48 |
+
omegaconf==2.2.3
|
49 |
+
pandas==1.4.3
|
50 |
+
Pillow==9.1.1
|
51 |
+
pyasn1==0.4.8
|
52 |
+
pyasn1-modules==0.2.8
|
53 |
+
pycodestyle==2.8.0
|
54 |
+
pyDeprecate==0.3.1
|
55 |
+
pydicom==2.3.0
|
56 |
+
pytorch-lightning==1.6.4
|
57 |
+
pytz==2022.1
|
58 |
+
PyWavelets==1.3.0
|
59 |
+
PyYAML==6.0
|
60 |
+
pyzmq==19.0.2
|
61 |
+
regex==2022.6.2
|
62 |
+
requests==2.28.0
|
63 |
+
requests-oauthlib==1.3.1
|
64 |
+
rotary-embedding-torch==0.1.5
|
65 |
+
rsa==4.8
|
66 |
+
scikit-image==0.19.3
|
67 |
+
scikit-learn==1.1.2
|
68 |
+
scikit-video==1.1.11
|
69 |
+
scipy==1.8.1
|
70 |
+
seaborn==0.11.2
|
71 |
+
sentry-sdk==1.7.2
|
72 |
+
setproctitle==1.2.3
|
73 |
+
shortuuid==1.0.9
|
74 |
+
SimpleITK==2.1.1.2
|
75 |
+
smmap==5.0.0
|
76 |
+
tensorboard==2.9.1
|
77 |
+
tensorboard-data-server==0.6.1
|
78 |
+
tensorboard-plugin-wit==1.8.1
|
79 |
+
threadpoolctl==3.1.0
|
80 |
+
tifffile==2022.8.3
|
81 |
+
toml==0.10.2
|
82 |
+
torch-tb-profiler==0.4.0
|
83 |
+
torchio==0.18.80
|
84 |
+
torchmetrics==0.9.1
|
85 |
+
tqdm==4.64.0
|
86 |
+
typing_extensions==4.2.0
|
87 |
+
urllib3==1.26.9
|
88 |
+
wandb==0.12.21
|
89 |
+
Werkzeug==2.1.2
|
90 |
+
wrapt==1.14.1
|
91 |
+
yarl==1.7.2
|
92 |
+
zipp==3.8.0
|
93 |
+
wandb
|
94 |
+
tensorboardX==2.4.1
|
Generation_Pipeline_filter_all/val_set/bodymap_colon.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BDMAP_00004910
|
2 |
+
BDMAP_00001438
|
3 |
+
BDMAP_00000568
|
4 |
+
BDMAP_00002828
|
5 |
+
BDMAP_00003634
|
6 |
+
BDMAP_00004121
|
7 |
+
BDMAP_00004764
|
8 |
+
BDMAP_00003972
|
9 |
+
BDMAP_00003113
|
10 |
+
BDMAP_00005001
|
11 |
+
BDMAP_00001785
|
12 |
+
BDMAP_00005016
|
13 |
+
BDMAP_00002739
|
14 |
+
BDMAP_00003299
|
15 |
+
BDMAP_00003357
|
16 |
+
BDMAP_00001078
|
17 |
+
BDMAP_00000874
|
18 |
+
BDMAP_00003560
|
19 |
+
BDMAP_00003373
|
20 |
+
BDMAP_00003172
|
21 |
+
BDMAP_00002875
|
22 |
+
BDMAP_00000552
|
23 |
+
BDMAP_00003510
|
24 |
+
BDMAP_00004604
|
25 |
+
BDMAP_00002598
|
Generation_Pipeline_filter_all/val_set/bodymap_kidney.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BDMAP_00000487
|
2 |
+
BDMAP_00002631
|
3 |
+
BDMAP_00002744
|
4 |
+
BDMAP_00000833
|
5 |
+
BDMAP_00002648
|
6 |
+
BDMAP_00002840
|
7 |
+
BDMAP_00000608
|
8 |
+
BDMAP_00002804
|
9 |
+
BDMAP_00002775
|
10 |
+
BDMAP_00004551
|
11 |
+
BDMAP_00001413
|
12 |
+
BDMAP_00000511
|
13 |
+
BDMAP_00003150
|
14 |
+
BDMAP_00000794
|
15 |
+
BDMAP_00001255
|
16 |
+
BDMAP_00002242
|
17 |
+
BDMAP_00004746
|
18 |
+
BDMAP_00002864
|
19 |
+
BDMAP_00003486
|
20 |
+
BDMAP_00004250
|
21 |
+
BDMAP_00003143
|
22 |
+
BDMAP_00003164
|
23 |
+
BDMAP_00004578
|
24 |
+
BDMAP_00001735
|
Generation_Pipeline_filter_all/val_set/bodymap_liver.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BDMAP_00004281
|
2 |
+
BDMAP_00003481
|
3 |
+
BDMAP_00004890
|
4 |
+
BDMAP_00001786
|
5 |
+
BDMAP_00000101
|
6 |
+
BDMAP_00004117
|
7 |
+
BDMAP_00000615
|
8 |
+
BDMAP_00000921
|
9 |
+
BDMAP_00005130
|
10 |
+
BDMAP_00004378
|
11 |
+
BDMAP_00004704
|
12 |
+
BDMAP_00003439
|
13 |
+
BDMAP_00002717
|
14 |
+
BDMAP_00004878
|
15 |
+
BDMAP_00000100
|
16 |
+
BDMAP_00001309
|
17 |
+
BDMAP_00002214
|
18 |
+
BDMAP_00001198
|
19 |
+
BDMAP_00001962
|
20 |
+
BDMAP_00002463
|
21 |
+
BDMAP_00005139
|
22 |
+
BDMAP_00000831
|
23 |
+
BDMAP_00002955
|
24 |
+
BDMAP_00003272
|
25 |
+
BDMAP_00000745
|
Generation_Pipeline_filter_all/val_set/bodymap_pancreas.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BDMAP_00000332
|
2 |
+
BDMAP_00004858
|
3 |
+
BDMAP_00005155
|
4 |
+
BDMAP_00001205
|
5 |
+
BDMAP_00004770
|
6 |
+
BDMAP_00001361
|
7 |
+
BDMAP_00002944
|
8 |
+
BDMAP_00003961
|
9 |
+
BDMAP_00000430
|
10 |
+
BDMAP_00000679
|
11 |
+
BDMAP_00003809
|
12 |
+
BDMAP_00004115
|
13 |
+
BDMAP_00003367
|
14 |
+
BDMAP_00002899
|
15 |
+
BDMAP_00003771
|
16 |
+
BDMAP_00003502
|
17 |
+
BDMAP_00001628
|
18 |
+
BDMAP_00003884
|
19 |
+
BDMAP_00005074
|
20 |
+
BDMAP_00003114
|
21 |
+
BDMAP_00004741
|
22 |
+
BDMAP_00001746
|
23 |
+
BDMAP_00002603
|
24 |
+
BDMAP_00004128
|