Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import gc | |
import pathlib | |
import sys | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionPipeline | |
sys.path.insert(0, 'lora') | |
from lora_diffusion import monkeypatch_lora, tune_lora_scale | |
class InferencePipeline: | |
def __init__(self): | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.weight_path = None | |
def clear(self) -> None: | |
self.weight_path = None | |
del self.pipe | |
self.pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def get_lora_weight_path(name: str) -> pathlib.Path: | |
curr_dir = pathlib.Path(__file__).parent | |
return curr_dir / name | |
def get_lora_text_encoder_weight_path(path: pathlib.Path) -> str: | |
parent_dir = path.parent | |
stem = path.stem | |
text_encoder_filename = f'{stem}.text_encoder.pt' | |
path = parent_dir / text_encoder_filename | |
return path.as_posix() if path.exists() else '' | |
def load_pipe(self, model_id: str, lora_filename: str) -> None: | |
weight_path = self.get_lora_weight_path(lora_filename) | |
if weight_path == self.weight_path: | |
return | |
self.weight_path = weight_path | |
lora_weight = torch.load(self.weight_path, map_location=self.device) | |
if self.device.type == 'cpu': | |
pipe = StableDiffusionPipeline.from_pretrained(model_id) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=torch.float16) | |
pipe = pipe.to(self.device) | |
monkeypatch_lora(pipe.unet, lora_weight) | |
lora_text_encoder_weight_path = self.get_lora_text_encoder_weight_path( | |
weight_path) | |
if lora_text_encoder_weight_path: | |
lora_text_encoder_weight = torch.load( | |
lora_text_encoder_weight_path, map_location=self.device) | |
monkeypatch_lora(pipe.text_encoder, | |
lora_text_encoder_weight, | |
target_replace_module=['CLIPAttention']) | |
self.pipe = pipe | |
def run( | |
self, | |
base_model: str, | |
lora_weight_name: str, | |
prompt: str, | |
alpha: float, | |
alpha_for_text: float, | |
seed: int, | |
n_steps: int, | |
guidance_scale: float, | |
) -> PIL.Image.Image: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
self.load_pipe(base_model, lora_weight_name) | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
tune_lora_scale(self.pipe.unet, alpha) # type: ignore | |
tune_lora_scale(self.pipe.text_encoder, alpha_for_text) # type: ignore | |
out = self.pipe(prompt, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
generator=generator) # type: ignore | |
return out.images[0] | |