Update app.py
Browse files
app.py
CHANGED
@@ -1,177 +1,114 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from gradio_webrtc import WebRTC
|
4 |
-
import requests
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
|
9 |
-
from random import choice
|
10 |
-
import io
|
11 |
-
|
12 |
import gradio as gr
|
13 |
-
|
14 |
import cv2
|
15 |
import numpy as np
|
16 |
-
|
17 |
-
from io import BytesIO
|
18 |
-
import random
|
19 |
-
import tempfile
|
20 |
-
from pathlib import Path
|
21 |
-
|
22 |
-
import torch
|
23 |
-
from transformers import pipeline
|
24 |
-
|
25 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
detector50 = pipeline(model="facebook/detr-resnet-50")
|
31 |
-
|
32 |
-
detector101 = pipeline(model="facebook/detr-resnet-101")
|
33 |
-
|
34 |
if torch.cuda.is_available():
|
35 |
-
|
36 |
-
detector50.model.to('cuda')
|
37 |
-
detector101.model.to('cuda')
|
38 |
-
|
39 |
-
model = "detr-resnet-101"
|
40 |
|
41 |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
42 |
-
|
43 |
-
|
44 |
|
45 |
fdic = {
|
46 |
-
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"
|
50 |
-
"weight" : "bold"
|
51 |
}
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
def query_data(model, in_pil_img: Image.Image):
|
57 |
-
results = None
|
58 |
-
if model == "detr-resnet-101":
|
59 |
-
results = detector101(in_pil_img)
|
60 |
-
else:
|
61 |
-
results = detector50(in_pil_img)
|
62 |
-
# print(f"检测结果:{results}")
|
63 |
return results
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
def get_figure(in_pil_img):
|
68 |
plt.figure(figsize=(16, 10))
|
69 |
plt.imshow(in_pil_img)
|
70 |
-
|
71 |
ax = plt.gca()
|
72 |
-
|
73 |
-
in_results = query_data(model, in_pil_img)
|
74 |
|
75 |
for prediction in in_results:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
ax.add_patch(plt.Rectangle((
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
plt.axis("off")
|
86 |
-
|
87 |
-
return plt.gcf()
|
88 |
-
|
89 |
-
|
90 |
-
def process_single_frame(frame):
|
91 |
-
# print(f"开始处理单帧")
|
92 |
-
# 将 BGR 转换为 RGB
|
93 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
94 |
-
|
95 |
-
# 创建 PIL 图像对象
|
96 |
-
pil_image = Image.fromarray(rgb_frame)
|
97 |
-
|
98 |
-
# 获取带有标注信息的图像
|
99 |
-
figure = get_figure(pil_image)
|
100 |
-
|
101 |
buf = BytesIO()
|
102 |
-
|
|
|
103 |
buf.seek(0)
|
104 |
annotated_image = Image.open(buf).convert('RGB')
|
105 |
-
|
106 |
return np.array(annotated_image)
|
107 |
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
raise ValueError("无法打开输入视频文件")
|
117 |
-
|
118 |
-
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
119 |
-
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
120 |
-
# fps = cap.get(cv2.CAP_PROP_FPS)
|
121 |
-
# fourcc = int(cap.get(cv2.CAP_PROP_FOURCC)) # 使用原始视频的编码器
|
122 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 获取总帧数
|
123 |
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
try:
|
128 |
-
while frame_count < total_frames:
|
129 |
-
ret, frame = cap.read()
|
130 |
-
if not ret:
|
131 |
-
print(f"提前结束:在第 {frame_count} 帧时无法读取帧")
|
132 |
-
break
|
133 |
-
|
134 |
-
frame_count += 1
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
print(f"已处理 {frame_count}/{total_frames} 帧")
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
# return None
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
return None
|
154 |
|
155 |
-
|
156 |
-
# 更新 Gradio 接口以支持视频输入和输出
|
157 |
-
with gr.Blocks(title="基于AI的安全风险识别及防控应用",
|
158 |
-
css=".gradio-container {background:lightyellow;}"
|
159 |
-
) as demo:
|
160 |
gr.HTML("<div style='font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;'>基于AI的安全风险识别及防控应用</div>")
|
161 |
|
162 |
with gr.Row():
|
163 |
input_video = gr.Video(label="输入视频")
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
output_video.stream(
|
170 |
-
fn=infer_video,
|
171 |
-
inputs=[input_video],
|
172 |
-
outputs=[output_video],
|
173 |
-
trigger=detect.click
|
174 |
-
)
|
175 |
-
|
176 |
-
demo.launch()
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from transformers import pipeline
|
7 |
+
import torch
|
8 |
+
from random import choice
|
9 |
+
from io import BytesIO
|
10 |
+
import os
|
11 |
+
from datetime import datetime
|
12 |
|
13 |
+
# 初始化对象检测器并移动到GPU(如果可用)
|
14 |
+
detector = pipeline(model="facebook/detr-resnet-101", use_fast=True)
|
|
|
|
|
|
|
|
|
|
|
15 |
if torch.cuda.is_available():
|
16 |
+
detector.model.to('cuda')
|
|
|
|
|
|
|
|
|
17 |
|
18 |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
19 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
20 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
21 |
|
22 |
fdic = {
|
23 |
+
"style": "italic",
|
24 |
+
"size": 15,
|
25 |
+
"color": "yellow",
|
26 |
+
"weight": "bold"
|
|
|
27 |
}
|
28 |
|
29 |
+
def query_data(in_pil_img: Image.Image):
|
30 |
+
results = detector(in_pil_img)
|
31 |
+
print(f"检测结果:{results}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return results
|
33 |
|
34 |
+
def get_annotated_image(in_pil_img):
|
|
|
|
|
35 |
plt.figure(figsize=(16, 10))
|
36 |
plt.imshow(in_pil_img)
|
|
|
37 |
ax = plt.gca()
|
38 |
+
in_results = query_data(in_pil_img)
|
|
|
39 |
|
40 |
for prediction in in_results:
|
41 |
+
color = choice(COLORS)
|
42 |
+
box = prediction['box']
|
43 |
+
label = prediction['label']
|
44 |
+
score = round(prediction['score'] * 100, 1)
|
45 |
|
46 |
+
ax.add_patch(plt.Rectangle((box['xmin'], box['ymin']),
|
47 |
+
box['xmax'] - box['xmin'],
|
48 |
+
box['ymax'] - box['ymin'],
|
49 |
+
fill=False, color=color, linewidth=3))
|
50 |
+
ax.text(box['xmin'], box['ymin'], f"{label}: {score}%", fontdict=fdic)
|
51 |
|
52 |
plt.axis("off")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
buf = BytesIO()
|
54 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
55 |
+
plt.close() # 关闭图形以释放内存
|
56 |
buf.seek(0)
|
57 |
annotated_image = Image.open(buf).convert('RGB')
|
|
|
58 |
return np.array(annotated_image)
|
59 |
|
60 |
+
def process_video(input_video_path):
|
61 |
+
cap = cv2.VideoCapture(input_video_path)
|
62 |
+
if not cap.isOpened():
|
63 |
+
raise ValueError("无法打开输入视频文件")
|
64 |
|
65 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
66 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
67 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
68 |
+
|
69 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用 'mp4v' 编码器
|
70 |
+
output_dir = './output_videos' # 指定输出目录
|
71 |
+
os.makedirs(output_dir, exist_ok=True) # 确保输出目录存在
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# 生成唯一文件名
|
74 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
75 |
+
output_video_filename = f"output_{timestamp}.mp4"
|
76 |
+
output_video_path = os.path.join(output_dir, output_video_filename)
|
77 |
|
78 |
+
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
while True:
|
81 |
+
ret, frame = cap.read()
|
82 |
+
if not ret:
|
83 |
+
break
|
84 |
+
|
85 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
86 |
+
pil_image = Image.fromarray(rgb_frame)
|
87 |
+
annotated_frame = get_annotated_image(pil_image)
|
88 |
+
bgr_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
|
89 |
|
90 |
+
# 确保帧的尺寸与视频输出一致
|
91 |
+
if bgr_frame.shape[:2] != (height, width):
|
92 |
+
bgr_frame = cv2.resize(bgr_frame, (width, height))
|
93 |
|
94 |
+
print(f"Writing frame of shape {bgr_frame.shape} and type {bgr_frame.dtype}") # 调试信息
|
95 |
+
out.write(bgr_frame)
|
|
|
96 |
|
97 |
+
cap.release()
|
98 |
+
out.release()
|
|
|
99 |
|
100 |
+
# 返回输出视频路径给 Gradio
|
101 |
+
return output_video_path
|
|
|
|
|
102 |
|
103 |
+
with gr.Blocks(css=".gradio-container {background:lightyellow;}", title="基于AI的安全风险识别及防控应用") as demo:
|
|
|
|
|
|
|
|
|
104 |
gr.HTML("<div style='font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;'>基于AI的安全风险识别及防控应用</div>")
|
105 |
|
106 |
with gr.Row():
|
107 |
input_video = gr.Video(label="输入视频")
|
108 |
+
detect_button = gr.Button("开始检测", variant="primary")
|
109 |
+
output_video = gr.Video(label="输出视频")
|
110 |
+
|
111 |
+
# 将process_video函数绑定到按钮点击事件,并将处理后的视频路径传递给output_video
|
112 |
+
detect_button.click(process_video, inputs=input_video, outputs=output_video)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
demo.launch()
|