Update app.py
Browse files
app.py
CHANGED
@@ -45,32 +45,26 @@ fdic = {
|
|
45 |
"weight" : "bold"
|
46 |
}
|
47 |
|
|
|
48 |
|
49 |
-
def infer(model, in_pil_img):
|
50 |
|
|
|
51 |
results = None
|
52 |
if model == "detr-resnet-101":
|
53 |
results = detector101(in_pil_img)
|
54 |
else:
|
55 |
results = detector50(in_pil_img)
|
56 |
-
|
57 |
return results
|
58 |
|
59 |
|
60 |
-
#######################################
|
61 |
-
|
62 |
-
|
63 |
-
def query_data(model, in_pil_img: Image.Image):
|
64 |
-
return infer(model, in_pil_img)
|
65 |
-
|
66 |
-
|
67 |
|
68 |
def get_figure(in_pil_img):
|
69 |
plt.figure(figsize=(16, 10))
|
70 |
plt.imshow(in_pil_img)
|
71 |
|
72 |
ax = plt.gca()
|
73 |
-
|
74 |
in_results = query_data(in_pil_img)
|
75 |
|
76 |
for prediction in in_results:
|
@@ -88,18 +82,8 @@ def get_figure(in_pil_img):
|
|
88 |
return plt.gcf()
|
89 |
|
90 |
|
91 |
-
def infer(in_pil_img):
|
92 |
-
figure = get_figure(in_pil_img)
|
93 |
-
|
94 |
-
buf = io.BytesIO()
|
95 |
-
figure.savefig(buf, bbox_inches='tight')
|
96 |
-
buf.seek(0)
|
97 |
-
output_pil_img = Image.open(buf)
|
98 |
-
|
99 |
-
return output_pil_img
|
100 |
-
|
101 |
-
|
102 |
def process_single_frame(frame):
|
|
|
103 |
# 将 BGR 转换为 RGB
|
104 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
105 |
|
@@ -118,6 +102,7 @@ def process_single_frame(frame):
|
|
118 |
|
119 |
|
120 |
def infer_video(input_video_path):
|
|
|
121 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
122 |
# output_video_path = Path(tmp_dir) / "output.mp4"
|
123 |
cap = cv2.VideoCapture(input_video_path)
|
|
|
45 |
"weight" : "bold"
|
46 |
}
|
47 |
|
48 |
+
#######################################
|
49 |
|
|
|
50 |
|
51 |
+
def query_data(model, in_pil_img: Image.Image):
|
52 |
results = None
|
53 |
if model == "detr-resnet-101":
|
54 |
results = detector101(in_pil_img)
|
55 |
else:
|
56 |
results = detector50(in_pil_img)
|
57 |
+
print(f"检测结果:{results}")
|
58 |
return results
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def get_figure(in_pil_img):
|
63 |
plt.figure(figsize=(16, 10))
|
64 |
plt.imshow(in_pil_img)
|
65 |
|
66 |
ax = plt.gca()
|
67 |
+
print(f"图像尺寸:{in_pil_img.size}")
|
68 |
in_results = query_data(in_pil_img)
|
69 |
|
70 |
for prediction in in_results:
|
|
|
82 |
return plt.gcf()
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def process_single_frame(frame):
|
86 |
+
print(f"开始处理单帧")
|
87 |
# 将 BGR 转换为 RGB
|
88 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
89 |
|
|
|
102 |
|
103 |
|
104 |
def infer_video(input_video_path):
|
105 |
+
print(f"开始处理视频 {input_video_path}")
|
106 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
107 |
# output_video_path = Path(tmp_dir) / "output.mp4"
|
108 |
cap = cv2.VideoCapture(input_video_path)
|