File size: 15,398 Bytes
2bf0a39
 
 
 
 
 
 
b55b7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf0a39
 
 
 
 
 
b55b7f0
2bf0a39
 
b55b7f0
2bf0a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55b7f0
2bf0a39
 
 
 
 
 
 
 
 
 
 
 
b55b7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf0a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55b7f0
 
 
 
 
 
2bf0a39
 
 
 
 
 
b55b7f0
2bf0a39
b55b7f0
2bf0a39
 
 
b55b7f0
a986fa6
b55b7f0
2bf0a39
 
 
f594e45
 
 
2bf0a39
b55b7f0
 
 
 
 
 
913172d
 
f594e45
913172d
743b2fe
2bf0a39
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import gradio as gr
from bs4 import BeautifulSoup
import json
import time
import os
from transformers import AutoTokenizer, pipeline

example1 = '''<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Contact Form</title>
</head>
<body>
    <h1>Contact Form</h1>
    <form action="/submit-form" method="POST">
    <label for="name">Name:</label>
    <input type="text" id="name" name="name" required>
    <br>
    <label for="email">Email:</label>
    <input type="email" id="email" name="email" required>
    <br>
    <label for="location">Location:</label>
    <input type="text" id="location" name="location" required>
    <br>
    <label for="github">GitHub:</label>
    <input type="url" id="github" name="github" required>
    <br>
    <label for="linkedin">LinkedIn:</label>
    <input type="url" id="linkedin" name="linkedin" required>
    <br>
    <label for="phone">Phone:</label>
    <input type="tel" id="phone" name="phone" required>
    <br><br>
    <input type="submit" value="Submit">
    </form>
</body>
</html>
'''

solution1 = '''{
    "name": "Ana Guida",
    "email": "example@gmail.com",
    "location": "Amsterdam, Netherlands",
    "github": "https://github.com/34kmddfn",
    "linkedin": "https://www.linkedin.com/in/ana-rguida/",
    "phone": "+351 928 169 341"
}'''

example2 = '''<!DOCTYPE html>
<html>
<head>
  <title>Resume Form</title>
</head>
  <body>
    <form action="/" method="POST">
      <label>What kind of pet do you have?</label>
      <br>
      <input type="radio" id="dog" name="pet" value="dog">
      <label for="dog">Dog</label>
      <br>
      <input type="radio" id="cat" name="pet" value="cat">
      <label for="cat">Cat</label>
      <br>
      <input type="radio" id="other" name="pet" value="other">
      <label for="other">Other</label>
      <br><br>
      <label>What color is your pet?</label>
      <br>
      <input type="checkbox" id="black" name="color" value="black">
      <label for="black">Black</label>
      <br>
      <input type="checkbox" id="white" name="color" value="white">
      <label for="white">White</label>
      <br>
      <input type="checkbox" id="brown" name="color" value="brown">
      <label for="brown">Brown</label>
      <br><br>
      <input type="submit" value="Submit">
    </form>
  </body>
</html>
'''

solution2 = '''{
  "pet": "dog",
  "color": [
    "black",
    "brown"
  ]
}'''

example3 = '''<!DOCTYPE html>
<html>
<head>
  <title>Create account Form</title>
</head>
  <body>
    <form action="/" method="POST">
      <label for="name">Name:</label>
      <input type="text" id="name" name="name" required>
      <br>
      <label for="country">Select your country:</label>
      <br>
      <select id="country" name="country">
        <option value="usa">USA</option>
        <option value="uk">UK</option>
        <option value="germany">Germany</option>
        <option value="japan">Japan</option>
      </select>
      <br><br>
      <label for="birthday">Select your birthday:</label>
      <br>
      <input type="date" id="birthday" name="birthday">
      <br><br>
      <input type="submit" value="Submit">
    </form>
  </body>
</html>
'''

solution3 = '''{
  "name": "Mike",
  "country": "Germany",
  "birthday": "1990-05-07"
}'''


models = {
    "model_n1": "sileod/deberta-v3-base-tasksource-nli",
    # "model_n2": "roberta-large-mnli",
    # "model_n3": "facebook/bart-large-mnli",
    # "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
}
def find_form_fields_from_file(file):
    with open(file.name, "r") as f:
        content = f.read()
    return find_form_fields(content)

def find_form_fields(html_content):
    
    soup = BeautifulSoup(html_content, 'html.parser')
    
    # find all form tags
    forms = soup.find_all('form')
    
    form_fields = []
    
    for form in forms:
        # find all input and select tags within each form
        input_tags = form.find_all('input')
        select_tags = form.find_all('select')
        
        for tag in input_tags:
            form_fields.append(str(tag))
            
        for tag in select_tags:
            form_fields.append(str(tag))
    
    # Convert the list to a single string for display
    return form_fields

def load_json(json_file):
    with open(json_file, 'r') as f:
        data = json.load(f)
    return data

def classify_lines(text, candidate_labels, model_name):
    start_time = time.time()  # Start measuring time
    classifier = pipeline('zero-shot-classification', model=model_name)
    
    # Check if the text is already a list or if it needs splitting
    if isinstance(text, list):
        lines = text
    else:
        lines = text.split('\n')
        
    classified_lines = []
    for line in lines:
        if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():  
            # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
            results = classifier(line, candidate_labels=candidate_labels)
            top_classifications = results['labels'][:2]  # Get the top two classifications
            top_scores = results['scores'][:2]  # Get the top two scores
            classified_lines.append((line, list(zip(top_classifications, top_scores))))
    end_time = time.time()  # Stop measuring time
    execution_time = end_time - start_time  # Calculate execution time
    return classified_lines, execution_time

def classify_lines_json(text, json_content, candidate_labels, model_name):
    start_time = time.time()  # Start measuring time
    classifier = pipeline('zero-shot-classification', model=model_name)
    
    # Check if the text is already a list or if it needs splitting
    if isinstance(text, list):
        lines = text
    else:
        lines = text.split('\n')
        
    # Open the output.html file in write mode
    output_content = []

    last_input = "None"
    max_index = -1

    for i, line in enumerate(lines):
        if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") or line.strip().startswith("<option") ) and 'hidden' not in line.lower():  
            # Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
            results = classifier(line, candidate_labels=["text", "radio", "checkbox", "button", "date", "select"]) 
            if results['labels'][0] == "text" or results['labels'][0] == "date":
                # print("text")
                last_input = "text/date"
                input_results = classifier(line, candidate_labels=candidate_labels)
                top_classifications = input_results['labels'][:2]  # Get the top two classifications
                top_scores = input_results['scores'][:2]  # Get the top two scores
                line = line + f"<!-- Input: <{json_content[top_classifications[0]]}> - certainty: {format(top_scores[0], '.2f')} -->" 
            elif results['labels'][0] == "button":
                # print("button")
                last_input = "button"
                line = line + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')} -->"
            elif results['labels'][0] == "radio":
                # print("radio")
                if(last_input == "radio"):
                    radio_options.append(line)
                    radio_options_i.append(i)
                else:
                    radio_options = [line]
                    radio_options_i = [i]
                    radio_results_list = []
                last_input = "radio"
                input_results = classifier(line, candidate_labels=candidate_labels)
                top_classifications = input_results['labels'][:2]  # Get the top two classifications
                top_scores = input_results['scores'][:2]  # Get the top two scores
                
                radio_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]]) 
                radio_results_list.append(radio_results)
                
                # Get the scores from the radio_results_list
                scores = [result['scores'][0] for result in radio_results_list]

                previous_max_index = max_index
                # Find the index of the maximum score
                max_index = scores.index(max(scores))

                if previous_max_index != max_index:
                    
                    line_selected = radio_options[previous_max_index]
                    real_index = radio_options_i[previous_max_index]
                    if real_index < len(output_content):
                        output_content[real_index] = line_selected

                    line_selected = radio_options[max_index]
                    line_selected = line_selected + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{radio_results['labels'][0]}> - certainty: {format(max(scores), '.2f')} -->"    
                    real_index = radio_options_i[max_index]

                    if real_index < len(output_content):
                        output_content[real_index] = line_selected
                    else:
                        line = line_selected
            elif results['labels'][0] == "checkbox":
                # print("checkbox")
                last_input = "checkbox"
                input_results = classifier(line, candidate_labels=candidate_labels)
                top_classifications = input_results['labels'][:2]  # Get the top two classifications
                top_scores = input_results['scores'][:2]  # Get the top two scores
                
                checkbox_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]]) 

                if checkbox_results['scores'][0] > 0.8:
                    line = line + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{checkbox_results['labels'][0]}> - certainty: {format(checkbox_results['scores'][0], '.2f')} -->"   
            else: #elif results['labels'][0] == "select" or results['labels'][0] == "option":
                # print("select")
                if(last_input == "select"):
                    select_options.append(line)
                    select_options_i.append(i)
                else:
                    select_options = [line]
                    select_options_i = [i]
                    select_results_list = []
                last_input = "select"
                input_results = classifier(line, candidate_labels=candidate_labels)
                top_classifications = input_results['labels'][:2]  # Get the top two classifications
                top_scores = input_results['scores'][:2]  # Get the top two scores
                
                select_results = classifier(line, candidate_labels=[json_content[top_classifications[0]]]) 
                select_results_list.append(select_results)
                
                # Get the scores from the select_results_list
                scores = [result['scores'][0] for result in select_results_list]

                previous_max_index = max_index
                # Find the index of the maximum score
                max_index = scores.index(max(scores))

                if previous_max_index != max_index:
                    line_selected = select_options[previous_max_index]
                    real_index = select_options_i[previous_max_index]
                    if real_index < len(output_content):
                        output_content[real_index] = line_selected

                    line_selected = select_options[max_index]
                    line_selected = line_selected + f"<!-- Input: <{results['labels'][0]}> - certainty: {format(results['scores'][0], '.2f')}. LINE TO SELECT: <{select_results['labels'][0]}> - certainty: {format(max(scores), '.2f')} -->"    
                    real_index = select_options_i[max_index]

                    if real_index < len(output_content):
                        output_content[real_index] = line_selected
                    else:
                        line = line_selected

        output_content.append(line)
          

    end_time = time.time()  # Stop measuring time
    execution_time = end_time - start_time  # Calculate execution time
    return output_content, execution_time
    
def retrieve_fields(data, path=''):
    """Recursively retrieve all fields from a given JSON structure and prompt for filling."""
    fields = {}

    # If the data is a dictionary
    if isinstance(data, dict):
        for key, value in data.items():
            # Construct the updated path for nested structures
            new_path = f"{path}.{key}" if path else key
            fields.update(retrieve_fields(value, new_path))
    
    # If the data is a list, iterate over its items
    elif isinstance(data, list):
        for index, item in enumerate(data):
            new_path = f"{path}[{index}]"
            fields.update(retrieve_fields(item, new_path))
    
    # If the data is a simple type (str, int, etc.)
    else:
        prompt = f"Please fill in the {path} field." if not data else data
        fields[path] = prompt

    return fields

def retrieve_fields_from_file(file_path):
    """Load JSON data from a file, then retrieve all fields and prompt for filling."""
    with open(file_path.name, 'r') as f:
        data = f.read()
    
    return retrieve_fields(json.loads(data))


def process_files(html_file, json_file):

    #html_content = open_html(html_file)
    #print(html_file)
    html_inputs = find_form_fields(html_file)
    #print(json_file)
    json_content = retrieve_fields(json.loads(json_file))
    #Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]

    # Classify lines and measure execution time
    for model_name in models.values():
        tokenizer = AutoTokenizer.from_pretrained(model_name)

        #html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date", "select"], model_name)

        json_classified_lines, json_execution_time = classify_lines_json(html_file, json_content, list(json_content.keys()), model_name)

        # print(str(html_execution_time) + " - " + str(html_classified_lines))
        # print(str(json_execution_time) + " - " + str(json_classified_lines))
        
        #print(type(json_classified_lines))

    #return '\n'.join(map(str, html_classified_lines))
    return '\n'.join(map(str, json_classified_lines))

HF_TOKEN = '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'
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "form_matcher_demo_flagged")

iface = gr.Interface(fn=process_files, 
                     inputs=[gr.Textbox(lines = 20, max_lines = 1000, label="Upload HTML File"), gr.Textbox(lines = 20, max_lines = 1000, label="Upload JSON File")], 
                     outputs=gr.Textbox(lines = 20, max_lines = 1000, label="Output"),
                     examples=[
                        [example1, solution1],
                        [example2, solution2],
                        [example3, solution3],
                    ],
                    allow_flagging="manual",
                    flagging_callback=hf_writer
                    )
                   

iface.launch()