form_matcher / app.py
Francisco Santos
requirements edit
a986fa6
raw
history blame
6.42 kB
import gradio as gr
from bs4 import BeautifulSoup
import json
import time
import os
from transformers import AutoTokenizer, pipeline
models = {
"model_n1": "sileod/deberta-v3-base-tasksource-nli",
# "model_n2": "roberta-large-mnli",
# "model_n3": "facebook/bart-large-mnli",
# "model_n4": "cross-encoder/nli-deberta-v3-xsmall"
}
def open_html(file):
with open(file.name, "r") as f:
content = f.read()
return content
def find_form_fields(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
# find all form tags
forms = soup.find_all('form')
form_fields = []
for form in forms:
# find all input and select tags within each form
input_tags = form.find_all('input')
select_tags = form.find_all('select')
for tag in input_tags:
form_fields.append(str(tag))
for tag in select_tags:
form_fields.append(str(tag))
# Convert the list to a single string for display
return form_fields
def load_json(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data
def classify_lines(text, candidate_labels, model_name):
start_time = time.time() # Start measuring time
classifier = pipeline('zero-shot-classification', model=model_name)
# Check if the text is already a list or if it needs splitting
if isinstance(text, list):
lines = text
else:
lines = text.split('\n')
classified_lines = []
for line in lines:
if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
# Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
results = classifier(line, candidate_labels=candidate_labels)
top_classifications = results['labels'][:2] # Get the top two classifications
top_scores = results['scores'][:2] # Get the top two scores
classified_lines.append((line, list(zip(top_classifications, top_scores))))
end_time = time.time() # Stop measuring time
execution_time = end_time - start_time # Calculate execution time
return classified_lines, execution_time
def classify_lines_json(text, json_content, candidate_labels, model_name, output_file_path):
start_time = time.time() # Start measuring time
classifier = pipeline('zero-shot-classification', model=model_name)
# Check if the text is already a list or if it needs splitting
if isinstance(text, list):
lines = text
else:
lines = text.split('\n')
# Open the output.html file in write mode
output_content = []
with open(output_file_path, 'w') as output_file:
for line in lines:
if line.strip() and (line.strip().startswith("<input") or line.strip().startswith("<select") )and 'hidden' not in line.lower():
# Skip empty lines, classify lines starting with "<input", and exclude lines with 'hidden'
results = classifier(line, candidate_labels=candidate_labels)
top_classifications = results['labels'][:2] # Get the top two classifications
top_scores = results['scores'][:2] # Get the top two scores
line = line + f"<!-- Input: {json_content[top_classifications[0]]} with this certainty: {top_scores[0]} -->"
output_file.write(line + '\n')
output_content.append(line + '\n')
end_time = time.time() # Stop measuring time
execution_time = end_time - start_time # Calculate execution time
return output_content, execution_time
def retrieve_fields(data, path=''):
"""Recursively retrieve all fields from a given JSON structure and prompt for filling."""
fields = {}
# If the data is a dictionary
if isinstance(data, dict):
for key, value in data.items():
# Construct the updated path for nested structures
new_path = f"{path}.{key}" if path else key
fields.update(retrieve_fields(value, new_path))
# If the data is a list, iterate over its items
elif isinstance(data, list):
for index, item in enumerate(data):
new_path = f"{path}[{index}]"
fields.update(retrieve_fields(item, new_path))
# If the data is a simple type (str, int, etc.)
else:
prompt = f"Please fill in the {path} field." if not data else data
fields[path] = prompt
return fields
def retrieve_fields_from_file(file_path):
"""Load JSON data from a file, then retrieve all fields and prompt for filling."""
with open(file_path.name, 'r') as f:
data = f.read()
return retrieve_fields(json.loads(data))
def process_files(html_file, json_file):
# This function will process the files.
# Replace this with your own logic.
output_file_path = "./output.html"
# Open and read the files
html_content = open_html(html_file)
#print(html_content)
html_inputs = find_form_fields(html_content)
json_content = retrieve_fields_from_file(json_file)
#Classificar os inputs do json para ver em que tipo de input ["text", "radio", "checkbox", "button", "date"]
# Classify lines and measure execution time
for model_name in models.values():
tokenizer = AutoTokenizer.from_pretrained(model_name)
html_classified_lines, html_execution_time = classify_lines(html_inputs, ["text", "radio", "checkbox", "button", "date"], model_name)
json_classified_lines, json_execution_time = classify_lines_json(html_content, json_content, list(json_content.keys()), model_name, output_file_path)
# print(str(html_execution_time) + " - " + str(html_classified_lines))
# print(str(json_execution_time) + " - " + str(json_classified_lines))
#FILL HERE
#print(type(json_classified_lines))
# Assuming your function returns the processed HTML
#json_classified_lines
#return '\n'.join(map(str, html_classified_lines))
return '\n'.join(map(str, json_classified_lines))
iface = gr.Interface(fn=process_files,
inputs=[gr.inputs.File(label="Upload HTML File"), gr.inputs.File(label="Upload JSON File")],
outputs="text")
iface.launch()