|
import argparse |
|
import getpass |
|
import sys |
|
sys.path.append('..') |
|
import json |
|
from multiprocessing import cpu_count |
|
|
|
import torch |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
if torch.xpu.is_available(): |
|
from lib.infer.modules.ipex import ipex_init |
|
ipex_init() |
|
except Exception: |
|
pass |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
import os |
|
import sys |
|
import subprocess |
|
import platform |
|
|
|
syspf = platform.system() |
|
python_version = "39" |
|
|
|
def find_python_executable(): |
|
runtime_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'runtime')) |
|
if os.path.exists(runtime_path): |
|
logger.info("Current user: Runtime") |
|
return runtime_path |
|
elif syspf == "Linux": |
|
try: |
|
result = subprocess.run(["which", "python"], capture_output=True, text=True, check=True) |
|
python_path = result.stdout.strip() |
|
logger.info("Current user: Linux") |
|
return python_path |
|
except subprocess.CalledProcessError: |
|
raise Exception("Could not find the Python path on Linux.") |
|
elif syspf == "Windows": |
|
try: |
|
result = subprocess.run(["where", "python"], capture_output=True, text=True, check=True) |
|
output_lines = result.stdout.strip().split('\n') |
|
if output_lines: |
|
python_path = output_lines[0] |
|
python_path = os.path.dirname(python_path) |
|
current_user = os.getlogin() or getpass.getuser() |
|
logger.info("Current user: %s" % current_user) |
|
return python_path |
|
raise Exception("Python executable not found in the PATH.") |
|
except subprocess.CalledProcessError: |
|
raise Exception("Could not find the Python path on Windows.") |
|
elif syspf == "Darwin": |
|
try: |
|
result = subprocess.run(["which", "python"], capture_output=True, text=True, check=True) |
|
python_path = result.stdout.strip() |
|
logger.info("Current user: Darwin") |
|
return python_path |
|
except subprocess.CalledProcessError: |
|
raise Exception("Could not find the Python path on macOS.") |
|
else: |
|
raise Exception("Operating system not compatible: {syspf}".format(syspf=syspf)) |
|
|
|
python_path = find_python_executable() |
|
|
|
|
|
version_config_list = [ |
|
"v1/32k.json", |
|
"v1/40k.json", |
|
"v1/48k.json", |
|
"v2/48k.json", |
|
"v2/32k.json", |
|
] |
|
|
|
|
|
def singleton_variable(func): |
|
def wrapper(*args, **kwargs): |
|
if not wrapper.instance: |
|
wrapper.instance = func(*args, **kwargs) |
|
return wrapper.instance |
|
|
|
wrapper.instance = None |
|
return wrapper |
|
|
|
|
|
@singleton_variable |
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.json_config = self.load_config_json() |
|
self.gpu_mem = None |
|
( |
|
self.python_cmd, |
|
self.listen_port, |
|
self.iscolab, |
|
self.noparallel, |
|
self.noautoopen, |
|
self.paperspace, |
|
self.is_cli, |
|
self.grtheme, |
|
self.dml, |
|
) = self.arg_parse() |
|
self.instead = "" |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
@staticmethod |
|
def load_config_json() -> dict: |
|
d = {} |
|
for config_file in version_config_list: |
|
with open(f"./assets/configs/{config_file}", "r") as f: |
|
d[config_file] = json.load(f) |
|
return d |
|
|
|
@staticmethod |
|
def arg_parse() -> tuple: |
|
exe = sys.executable or "python" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--port", type=int, default=7865, help="Listen port") |
|
parser.add_argument("--pycmd", type=str, default=exe, help="Python command") |
|
parser.add_argument("--colab", action="store_true", help="Launch in colab") |
|
parser.add_argument( |
|
"--noparallel", action="store_true", help="Disable parallel processing" |
|
) |
|
parser.add_argument( |
|
"--noautoopen", |
|
action="store_true", |
|
help="Do not open in browser automatically", |
|
) |
|
parser.add_argument( |
|
"--paperspace", |
|
action="store_true", |
|
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.", |
|
) |
|
parser.add_argument( |
|
"--is_cli", |
|
action="store_true", |
|
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!", |
|
) |
|
|
|
parser.add_argument( |
|
"-t", |
|
"--theme", |
|
help = "Theme for Gradio. Format - `JohnSmith9982/small_and_pretty` (no backticks)", |
|
default = "JohnSmith9982/small_and_pretty", |
|
type = str |
|
) |
|
|
|
parser.add_argument( |
|
"--dml", |
|
action="store_true", |
|
help="Use DirectML backend instead of CUDA." |
|
) |
|
|
|
cmd_opts = parser.parse_args() |
|
|
|
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 |
|
|
|
return ( |
|
cmd_opts.pycmd, |
|
cmd_opts.port, |
|
cmd_opts.colab, |
|
cmd_opts.noparallel, |
|
cmd_opts.noautoopen, |
|
cmd_opts.paperspace, |
|
cmd_opts.is_cli, |
|
cmd_opts.theme, |
|
cmd_opts.dml, |
|
) |
|
|
|
|
|
|
|
@staticmethod |
|
def has_mps() -> bool: |
|
if not torch.backends.mps.is_available(): |
|
return False |
|
try: |
|
torch.zeros(1).to(torch.device("mps")) |
|
return True |
|
except Exception: |
|
return False |
|
|
|
@staticmethod |
|
def has_xpu() -> bool: |
|
if hasattr(torch, "xpu") and torch.xpu.is_available(): |
|
return True |
|
else: |
|
return False |
|
|
|
def use_fp32_config(self): |
|
for config_file in version_config_list: |
|
self.json_config[config_file]["train"]["fp16_run"] = False |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
current_device = torch.cuda.current_device() |
|
cuda_version = '.'.join(str(x) for x in torch.cuda.get_device_capability(torch.cuda.current_device())) |
|
actual_vram = torch.cuda.get_device_properties(torch.cuda.current_device()).total_memory / (1024 ** 3) |
|
if self.has_xpu(): |
|
self.device = self.instead = "xpu:0" |
|
self.is_half = True |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if (actual_vram is not None and actual_vram <= 1) or (1 < float(cuda_version) < 3.7): |
|
logger.info("Using CPU due to unsupported CUDA version or low VRAM...") |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" |
|
self.device = self.instead = "cpu" |
|
self.is_half = False |
|
self.use_fp32_config() |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "P10" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
logger.info("Found GPU %s, force to fp32", self.gpu_name) |
|
self.is_half = False |
|
self.use_fp32_config() |
|
else: |
|
logger.info("Found GPU %s", self.gpu_name) |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("lib/infer/modules/train/preprocess.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("lib/infer/modules/train/preprocess.py", "w") as f: |
|
f.write(strr) |
|
elif self.has_mps(): |
|
logger.info("No supported Nvidia GPU found") |
|
self.device = self.instead = "mps" |
|
self.is_half = False |
|
self.use_fp32_config() |
|
else: |
|
logger.info("No supported Nvidia GPU found") |
|
self.device = self.instead = "cpu" |
|
self.is_half = False |
|
self.use_fp32_config() |
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem is not None and self.gpu_mem <= 4: |
|
if self.gpu_mem == 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
elif self.gpu_mem <= 3: |
|
x_pad = 1 |
|
x_query = 2 |
|
x_center = 16 |
|
x_max = 18 |
|
|
|
if self.dml: |
|
logger.info("Use DirectML instead") |
|
directml_dll_path = os.path.join(python_path, "Lib", "site-packages", "onnxruntime", "capi", "DirectML.dll") |
|
if ( |
|
os.path.exists( |
|
directml_dll_path |
|
) |
|
== False |
|
): |
|
pass |
|
|
|
import torch_directml |
|
|
|
self.device = torch_directml.device(torch_directml.default_device()) |
|
self.is_half = False |
|
else: |
|
if self.instead: |
|
logger.info(f"Use {self.instead} instead") |
|
providers_cuda_dll_path = os.path.join(python_path, "Lib", "site-packages", "onnxruntime", "capi", "onnxruntime_providers_cuda.dll") |
|
if ( |
|
os.path.exists( |
|
providers_cuda_dll_path |
|
) |
|
== False |
|
): |
|
pass |
|
return x_pad, x_query, x_center, x_max |
|
|