File size: 760 Bytes
b93970c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import torch
import torch.nn.functional as F
from collections import defaultdict


def make_positions(tensor, padding_idx):
    """Replace non-padding symbols with their position numbers.
    Position numbers begin at padding_idx+1. Padding symbols are ignored.
    """
    # The series of casts and type-conversions here are carefully
    # balanced to both work with ONNX export and XLA. In particular XLA
    # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
    # how to handle the dtype kwarg in cumsum.
    mask = tensor.ne(padding_idx).int()
    return (
                   torch.cumsum(mask, dim=1).type_as(mask) * mask
           ).long() + padding_idx


def softmax(x, dim):
    return F.softmax(x, dim=dim, dtype=torch.float32)