Spaces:
r3gm
/
Running

File size: 4,103 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import sys
import traceback

os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"

device = sys.argv[1]
n_part = int(sys.argv[2])
i_part = int(sys.argv[3])
if len(sys.argv) == 6:
    exp_dir = sys.argv[4]
    version = sys.argv[5]
else:
    i_gpu = sys.argv[4]
    exp_dir = sys.argv[5]
    os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
    version = sys.argv[6]
import fairseq
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F

if "privateuseone" not in device:
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
    elif torch.backends.mps.is_available():
        device = "mps"
else:
    import torch_directml

    device = torch_directml.device(torch_directml.default_device())

    def forward_dml(ctx, x, scale):
        ctx.scale = scale
        res = x.clone().detach()
        return res

    fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml

f = open("%s/extract_f0_feature.log" % exp_dir, "a+")


def printt(strr):
    print(strr)
    f.write("%s\n" % strr)
    f.flush()


printt(sys.argv)
model_path = "assets/hubert/hubert_base.pt"

printt(exp_dir)
wavPath = "%s/1_16k_wavs" % exp_dir
outPath = (
    "%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
)
os.makedirs(outPath, exist_ok=True)


# wave must be 16k, hop_size=320
def readwave(wav_path, normalize=False):
    wav, sr = sf.read(wav_path)
    assert sr == 16000
    feats = torch.from_numpy(wav).float()
    if feats.dim() == 2:  # double channels
        feats = feats.mean(-1)
    assert feats.dim() == 1, feats.dim()
    if normalize:
        with torch.no_grad():
            feats = F.layer_norm(feats, feats.shape)
    feats = feats.view(1, -1)
    return feats


# HuBERT model
printt("load model(s) from {}".format(model_path))
# if hubert model is exist
if os.access(model_path, os.F_OK) == False:
    printt(
        "Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main"
        % model_path
    )
    exit(0)
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
    [model_path],
    suffix="",
)
model = models[0]
model = model.to(device)
printt("move model to %s" % device)
if device not in ["mps", "cpu"]:
    model = model.half()
model.eval()

todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
n = max(1, len(todo) // 10)  # 最多打印十条
if len(todo) == 0:
    printt("no-feature-todo")
else:
    printt("all-feature-%s" % len(todo))
    for idx, file in enumerate(todo):
        try:
            if file.endswith(".wav"):
                wav_path = "%s/%s" % (wavPath, file)
                out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))

                if os.path.exists(out_path):
                    continue

                feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
                padding_mask = torch.BoolTensor(feats.shape).fill_(False)
                inputs = {
                    "source": feats.half().to(device)
                    if device not in ["mps", "cpu"]
                    else feats.to(device),
                    "padding_mask": padding_mask.to(device),
                    "output_layer": 9 if version == "v1" else 12,  # layer 9
                }
                with torch.no_grad():
                    logits = model.extract_features(**inputs)
                    feats = (
                        model.final_proj(logits[0]) if version == "v1" else logits[0]
                    )

                feats = feats.squeeze(0).float().cpu().numpy()
                if np.isnan(feats).sum() == 0:
                    np.save(out_path, feats, allow_pickle=False)
                else:
                    printt("%s-contains nan" % file)
                if idx % n == 0:
                    printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape))
        except:
            printt(traceback.format_exc())
    printt("all-feature-done")