Spaces:
Runtime error
Runtime error
File size: 4,892 Bytes
084b7bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
# load text-to-speech checkpoint and speaker embeddings
model_id = "Sandiago21/speecht5_finetuned_google_fleurs_greek" # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
processor = SpeechT5Processor.from_pretrained(model_id)
replacements = [
("ου", "u"),
("αυ", "af"),
("ευ", "ef"),
("ει", "i"),
("οι", "i"),
("αι", "e"),
("ού", "u"),
("εί", "i"),
("οί", "i"),
("αί", "e"),
("Ά", "A"),
("Έ", "E"),
("Ή", "H"),
("Ί", "I"),
("Ό", "O"),
("Ύ", "Y"),
("Ώ", "O"),
("ΐ", "i"),
("Α", "A"),
("Β", "B"),
("Γ", "G"),
("Δ", "L"),
("Ε", "Ε"),
("Ζ", "Z"),
("Η", "I"),
("Θ", "Th"),
("Ι", "I"),
("Κ", "K"),
("Λ", "L"),
("Μ", "M"),
("Ν", "N"),
("Ξ", "Ks"),
("Ο", "O"),
("Π", "P"),
("Ρ", "R"),
("Σ", "S"),
("Τ", "T"),
("Υ", "Y"),
("Φ", "F"),
("Χ", "X"),
("Ω", "O"),
("ά", "a"),
("έ", "e"),
("ή", "i"),
("ί", "i"),
("α", "a"),
("β", "v"),
("γ", "g"),
("δ", "d"),
("ε", "e"),
("ζ", "z"),
("η", "i"),
("θ", "th"),
("ι", "i"),
("κ", "k"),
("λ", "l"),
("μ", "m"),
("ν", "n"),
("ξ", "ks"),
("ο", "o"),
("π", "p"),
("ρ", "r"),
("ς", "s"),
("σ", "s"),
("τ", "t"),
("υ", "i"),
("φ", "f"),
("χ", "h"),
("ψ", "ps"),
("ω", "o"),
("ϊ", "i"),
("ϋ", "i"),
("ό", "o"),
("ύ", "i"),
("ώ", "o"),
("í", "i"),
("õ", "o"),
("Ε", "E"),
("Ψ", "Ps"),
]
def cleanup_text(text):
for src, dst in replacements:
text = text.replace(src, dst)
return text
def synthesize_speech(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "greek"})
return outputs["text"]
def synthesise(text):
text = cleanup_text(text)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return ((16000, synthesised_speech), translated_text)
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|