File size: 4,892 Bytes
084b7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)

# load text-to-speech checkpoint and speaker embeddings
model_id = "Sandiago21/speecht5_finetuned_google_fleurs_greek"  # update with your model id
# pipe = pipeline("automatic-speech-recognition", model=model_id)
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)

processor = SpeechT5Processor.from_pretrained(model_id)

replacements = [
    ("ου", "u"),
    ("αυ", "af"),
    ("ευ", "ef"),
    ("ει", "i"),
    ("οι", "i"),
    ("αι", "e"),
    ("ού", "u"),
    ("εί", "i"),
    ("οί", "i"),
    ("αί", "e"),
    ("Ά", "A"),
    ("Έ", "E"),
    ("Ή", "H"),
    ("Ί", "I"),
    ("Ό", "O"),
    ("Ύ", "Y"),
    ("Ώ", "O"),
    ("ΐ", "i"),
    ("Α", "A"),
    ("Β", "B"),
    ("Γ", "G"),
    ("Δ", "L"),
    ("Ε", "Ε"),
    ("Ζ", "Z"),
    ("Η", "I"),
    ("Θ", "Th"),
    ("Ι", "I"),
    ("Κ", "K"),
    ("Λ", "L"),
    ("Μ", "M"),
    ("Ν", "N"),
    ("Ξ", "Ks"),
    ("Ο", "O"),
    ("Π", "P"),
    ("Ρ", "R"),
    ("Σ", "S"),
    ("Τ", "T"),
    ("Υ", "Y"),
    ("Φ", "F"),
    ("Χ", "X"),
    ("Ω", "O"),
    ("ά", "a"),
    ("έ", "e"),
    ("ή", "i"),
    ("ί", "i"),
    ("α", "a"),
    ("β", "v"),
    ("γ", "g"),
    ("δ", "d"),
    ("ε", "e"),
    ("ζ", "z"),
    ("η", "i"),
    ("θ", "th"),
    ("ι", "i"),
    ("κ", "k"),
    ("λ", "l"),
    ("μ", "m"),
    ("ν", "n"),
    ("ξ", "ks"),
    ("ο", "o"),
    ("π", "p"),
    ("ρ", "r"),
    ("ς", "s"),
    ("σ", "s"),
    ("τ", "t"),
    ("υ", "i"),
    ("φ", "f"),
    ("χ", "h"),
    ("ψ", "ps"),
    ("ω", "o"),
    ("ϊ", "i"),
    ("ϋ", "i"),
    ("ό", "o"),
    ("ύ", "i"),
    ("ώ", "o"),
    ("í", "i"),
    ("õ", "o"),
    ("Ε", "E"),
    ("Ψ", "Ps"),
]

def cleanup_text(text):
    for src, dst in replacements:
        text = text.replace(src, dst)
    return text

def synthesize_speech(text):
    text = cleanup_text(text)
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)

    return gr.Audio.update(value=(16000, speech.cpu().numpy()))

def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "greek"})
    return outputs["text"]


def synthesise(text):
    text = cleanup_text(text)
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return ((16000, synthesised_speech), translated_text)


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()