Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) | |
greek_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-el") | |
# load text-to-speech checkpoint and speaker embeddings | |
model_id = "microsoft/speecht5_tts" # update with your model id | |
# pipe = pipeline("automatic-speech-recognition", model=model_id) | |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
processor = SpeechT5Processor.from_pretrained(model_id) | |
model_id_greek = "Sandiago21/speecht5_finetuned_google_fleurs_greek" | |
model_greek = SpeechT5ForTextToSpeech.from_pretrained(model_id_greek) | |
processor_greek = SpeechT5Processor.from_pretrained(model_id_greek) | |
replacements = [ | |
("á", "a"), | |
("â", "a"), | |
("ã", "a"), | |
("í", "i"), | |
("á", "a"), | |
("í", "i"), | |
("ñ", "n"), | |
("ó", "o"), | |
("ú", "u"), | |
("ü", "u"), | |
("á", "a"), | |
("ç", "c"), | |
("è", "e"), | |
("ì", "i"), | |
("í", "i"), | |
("ò", "o"), | |
("ó", "o"), | |
("ù", "u"), | |
("ú", "u"), | |
("š", "s"), | |
("ï", "i"), | |
("à", "a"), | |
("â", "a"), | |
("ç", "c"), | |
("è", "e"), | |
("ë", "e"), | |
("î", "i"), | |
("ï", "i"), | |
("ô", "o"), | |
("ù", "u"), | |
("û", "u"), | |
("ü", "u"), | |
("ου", "u"), | |
("αυ", "af"), | |
("ευ", "ef"), | |
("ει", "i"), | |
("οι", "i"), | |
("αι", "e"), | |
("ού", "u"), | |
("εί", "i"), | |
("οί", "i"), | |
("αί", "e"), | |
("Ά", "A"), | |
("Έ", "E"), | |
("Ή", "H"), | |
("Ί", "I"), | |
("Ό", "O"), | |
("Ύ", "Y"), | |
("Ώ", "O"), | |
("ΐ", "i"), | |
("Α", "A"), | |
("Β", "B"), | |
("Γ", "G"), | |
("Δ", "L"), | |
("Ε", "Ε"), | |
("Ζ", "Z"), | |
("Η", "I"), | |
("Θ", "Th"), | |
("Ι", "I"), | |
("Κ", "K"), | |
("Λ", "L"), | |
("Μ", "M"), | |
("Ν", "N"), | |
("Ξ", "Ks"), | |
("Ο", "O"), | |
("Π", "P"), | |
("Ρ", "R"), | |
("Σ", "S"), | |
("Τ", "T"), | |
("Υ", "Y"), | |
("Φ", "F"), | |
("Χ", "X"), | |
("Ω", "O"), | |
("ά", "a"), | |
("έ", "e"), | |
("ή", "i"), | |
("ί", "i"), | |
("α", "a"), | |
("β", "v"), | |
("γ", "g"), | |
("δ", "d"), | |
("ε", "e"), | |
("ζ", "z"), | |
("η", "i"), | |
("θ", "th"), | |
("ι", "i"), | |
("κ", "k"), | |
("λ", "l"), | |
("μ", "m"), | |
("ν", "n"), | |
("ξ", "ks"), | |
("ο", "o"), | |
("π", "p"), | |
("ρ", "r"), | |
("ς", "s"), | |
("σ", "s"), | |
("τ", "t"), | |
("υ", "i"), | |
("φ", "f"), | |
("χ", "h"), | |
("ψ", "ps"), | |
("ω", "o"), | |
("ϊ", "i"), | |
("ϋ", "i"), | |
("ό", "o"), | |
("ύ", "i"), | |
("ώ", "o"), | |
("í", "i"), | |
("õ", "o"), | |
("Ε", "E"), | |
("Ψ", "Ps"), | |
] | |
def cleanup_text(text): | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
return text | |
def synthesize_speech(text): | |
text = cleanup_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
def translate_to_english(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"}) | |
return outputs["text"] | |
def synthesise_from_english(text): | |
text = cleanup_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu().numpy() | |
def translate_from_english_to_greek(text): | |
return greek_translation_pipe(text)[0]["translation_text"] | |
def synthesise_from_greek(text): | |
text = cleanup_text(text) | |
inputs = processor_greek(text=text, return_tensors="pt") | |
speech = model_greek.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate_to_english(audio) | |
translated_text = translate_from_english_to_greek(translated_text) | |
# synthesised_speech = synthesise_from_english(translated_text) | |
# translated_text = translate_from_english_to_greek(synthesised_speech) | |
synthesised_speech = synthesise_from_greek(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return ((16000, synthesised_speech), translated_text) | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's | |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |