radames commited on
Commit
f2d92e1
1 Parent(s): 4a23012

add anyline params

Browse files
Files changed (1) hide show
  1. app.py +44 -7
app.py CHANGED
@@ -2,6 +2,7 @@ import spaces
2
  import gradio as gr
3
  from gradio_imageslider import ImageSlider
4
  import torch
 
5
  torch.jit.script = lambda f: f
6
  from hidiffusion import apply_hidiffusion
7
  from diffusers import (
@@ -100,6 +101,8 @@ def predict(
100
  strength=1.0,
101
  controlnet_start=0.0,
102
  controlnet_end=1.0,
 
 
103
  progress=gr.Progress(track_tqdm=True),
104
  ):
105
  if IS_SPACES_ZERO:
@@ -110,7 +113,13 @@ def predict(
110
  conditioning, pooled = compel([prompt, negative_prompt])
111
  generator = torch.manual_seed(seed)
112
  last_time = time.time()
113
- anyline_image = anyline(padded_image, detect_resolution=1024)
 
 
 
 
 
 
114
  images = pipe(
115
  image=padded_image,
116
  control_image=anyline_image,
@@ -222,6 +231,20 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
222
  value=1.0,
223
  label="ControlNet End",
224
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225
 
226
  btn = gr.Button()
227
  with gr.Column(scale=2):
@@ -241,6 +264,8 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
241
  strength,
242
  controlnet_start,
243
  controlnet_end,
 
 
244
  ]
245
  outputs = [image_slider, padded_image, anyline_image]
246
  btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
@@ -261,7 +286,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
261
  0.8,
262
  1.0,
263
  0.0,
264
- 1.0,
 
 
265
  ],
266
  [
267
  "./examples/cybetruck.jpeg",
@@ -273,7 +300,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
273
  0.8,
274
  0.8,
275
  0.0,
276
- 1.0,
 
 
277
  ],
278
  [
279
  "./examples/jesus.png",
@@ -285,7 +314,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
285
  0.8,
286
  0.8,
287
  0.0,
288
- 1.0,
 
 
289
  ],
290
  [
291
  "./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
@@ -297,7 +328,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
297
  0.8,
298
  0.8,
299
  0.0,
300
- 1.0,
 
 
301
  ],
302
  [
303
  "./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
@@ -309,7 +342,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
309
  0.8,
310
  0.8,
311
  0.0,
312
- 1.0,
 
 
313
  ],
314
  [
315
  "./examples/huggingface.jpg",
@@ -321,7 +356,9 @@ SDXL Controlnet [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLi
321
  0.364,
322
  0.8,
323
  0.0,
324
- 1.0,
 
 
325
  ],
326
  ],
327
  cache_examples="lazy",
 
2
  import gradio as gr
3
  from gradio_imageslider import ImageSlider
4
  import torch
5
+
6
  torch.jit.script = lambda f: f
7
  from hidiffusion import apply_hidiffusion
8
  from diffusers import (
 
101
  strength=1.0,
102
  controlnet_start=0.0,
103
  controlnet_end=1.0,
104
+ guassian_sigma=2.0,
105
+ intensity_threshold=3,
106
  progress=gr.Progress(track_tqdm=True),
107
  ):
108
  if IS_SPACES_ZERO:
 
113
  conditioning, pooled = compel([prompt, negative_prompt])
114
  generator = torch.manual_seed(seed)
115
  last_time = time.time()
116
+ anyline_image = anyline(
117
+ padded_image,
118
+ detect_resolution=1280,
119
+ guassian_sigma=max(0.01, guassian_sigma),
120
+ intensity_threshold=intensity_threshold,
121
+ )
122
+
123
  images = pipe(
124
  image=padded_image,
125
  control_image=anyline_image,
 
231
  value=1.0,
232
  label="ControlNet End",
233
  )
234
+ guassian_sigma = gr.Slider(
235
+ minimum=0.01,
236
+ maximum=10.0,
237
+ step=0.1,
238
+ value=2.0,
239
+ label="(Anyline) Guassian Sigma",
240
+ )
241
+ intensity_threshold = gr.Slider(
242
+ minimum=0,
243
+ maximum=255,
244
+ step=1,
245
+ value=3,
246
+ label="(Anyline) Intensity Threshold",
247
+ )
248
 
249
  btn = gr.Button()
250
  with gr.Column(scale=2):
 
264
  strength,
265
  controlnet_start,
266
  controlnet_end,
267
+ guassian_sigma,
268
+ intensity_threshold,
269
  ]
270
  outputs = [image_slider, padded_image, anyline_image]
271
  btn.click(lambda x: None, inputs=None, outputs=image_slider).then(
 
286
  0.8,
287
  1.0,
288
  0.0,
289
+ 0.9,
290
+ 2,
291
+ 3,
292
  ],
293
  [
294
  "./examples/cybetruck.jpeg",
 
300
  0.8,
301
  0.8,
302
  0.0,
303
+ 0.9,
304
+ 2,
305
+ 3,
306
  ],
307
  [
308
  "./examples/jesus.png",
 
314
  0.8,
315
  0.8,
316
  0.0,
317
+ 0.9,
318
+ 2,
319
+ 3,
320
  ],
321
  [
322
  "./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
 
328
  0.8,
329
  0.8,
330
  0.0,
331
+ 0.9,
332
+ 2,
333
+ 3,
334
  ],
335
  [
336
  "./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
 
342
  0.8,
343
  0.8,
344
  0.0,
345
+ 0.9,
346
+ 2,
347
+ 3,
348
  ],
349
  [
350
  "./examples/huggingface.jpg",
 
356
  0.364,
357
  0.8,
358
  0.0,
359
+ 0.9,
360
+ 2,
361
+ 3,
362
  ],
363
  ],
364
  cache_examples="lazy",