Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import torchaudio | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
device="cpu" | |
# Load Nvidia Tacotron2 from Hub | |
tacotron2 = torch.hub.load( | |
"NVIDIA/DeepLearningExamples:torchhub", | |
"nvidia_tacotron2", | |
model_math='fp32', | |
pretrained=False, | |
) | |
# Load Weights and bias of nepali text | |
checkpoint_path = os.path.join(os.getcwd(), 'model_E45.ckpt') | |
state_dict = torch.load(checkpoint_path, map_location=device) | |
tacotron2.load_state_dict(state_dict) | |
tacotron2 = tacotron2.to(device) | |
tacotron2.eval() | |
# Load Nvidia Waveglow from Hub | |
waveglow = torch.hub.load( | |
"NVIDIA/DeepLearningExamples:torchhub", | |
"nvidia_waveglow", | |
model_math="fp32", | |
pretrained=False, | |
) | |
checkpoint = torch.hub.load_state_dict_from_url( | |
"https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth", # noqa: E501 | |
progress=False, | |
map_location=device, | |
) | |
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()} | |
waveglow.load_state_dict(state_dict) | |
waveglow = waveglow.remove_weightnorm(waveglow) | |
waveglow = waveglow.to(device) | |
waveglow.eval() | |
# Load Nvidia Utils from Hub | |
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils') | |
# sequences, lengths = utils.prepare_input_sequence([text]) | |
def inference(text): | |
with torch.inference_mode(): | |
sequences, lengths = utils.prepare_input_sequence([text]) | |
sequences = sequences.to(device) | |
lengths = lengths.to(device) | |
mel, _, _ = tacotron2.infer(sequences, lengths) | |
plt.imshow(mel[0].cpu().detach()) | |
plt.axis('off') | |
plt.savefig("test.png", bbox_inches='tight') | |
with torch.no_grad(): | |
audio = waveglow.infer(mel) | |
torchaudio.save("output.wav", audio[0:1].cpu(), sample_rate=22050) | |
return "output.wav","test.png" | |
title="TACOTRON 2" | |
description="Nepali Speech TACOTRON 2: The Tacotron 2 model for generating mel spectrograms from text. To use it, simply add you text or click on one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1712.05884' target='_blank'>Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2' target='_blank'>Github Repo</a></p>" | |
examples=[["life is like a box of chocolates"]] | |
gr.Interface(inference,"text",[gr.outputs.Audio(type="file",label="Audio"),gr.outputs.Image(type="file",label="Spectrogram")],title=title,description=description,article=article,examples=examples).launch(enable_queue=True) |