Omid Ghahroodi commited on
Commit
e3f74f5
1 Parent(s): a88cc3d

Add template

Browse files
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
app.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from apscheduler.schedulers.background import BackgroundScheduler
4
+ from huggingface_hub import snapshot_download
5
+
6
+ from src.display.about import (
7
+ CITATION_BUTTON_LABEL,
8
+ CITATION_BUTTON_TEXT,
9
+ EVALUATION_QUEUE_TEXT,
10
+ INTRODUCTION_TEXT,
11
+ LLM_BENCHMARKS_TEXT,
12
+ TITLE,
13
+ )
14
+ from src.display.css_html_js import custom_css
15
+ from src.display.utils import (
16
+ BENCHMARK_COLS,
17
+ COLS,
18
+ EVAL_COLS,
19
+ EVAL_TYPES,
20
+ NUMERIC_INTERVALS,
21
+ TYPES,
22
+ AutoEvalColumn,
23
+ ModelType,
24
+ fields,
25
+ WeightType,
26
+ Precision
27
+ )
28
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
29
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
30
+ from src.submission.submit import add_new_eval
31
+
32
+
33
+ def restart_space():
34
+ API.restart_space(repo_id=REPO_ID, token=TOKEN)
35
+
36
+ try:
37
+ print(EVAL_REQUESTS_PATH)
38
+ snapshot_download(
39
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
40
+ )
41
+ except Exception:
42
+ restart_space()
43
+ try:
44
+ print(EVAL_RESULTS_PATH)
45
+ snapshot_download(
46
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
47
+ )
48
+ except Exception:
49
+ restart_space()
50
+
51
+
52
+ raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
+ leaderboard_df = original_df.copy()
54
+
55
+ (
56
+ finished_eval_queue_df,
57
+ running_eval_queue_df,
58
+ pending_eval_queue_df,
59
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
60
+
61
+
62
+ # Searching and filtering
63
+ def update_table(
64
+ hidden_df: pd.DataFrame,
65
+ columns: list,
66
+ type_query: list,
67
+ precision_query: str,
68
+ size_query: list,
69
+ show_deleted: bool,
70
+ query: str,
71
+ ):
72
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
73
+ filtered_df = filter_queries(query, filtered_df)
74
+ df = select_columns(filtered_df, columns)
75
+ return df
76
+
77
+
78
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
79
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
80
+
81
+
82
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
83
+ always_here_cols = [
84
+ AutoEvalColumn.model_type_symbol.name,
85
+ AutoEvalColumn.model.name,
86
+ ]
87
+ # We use COLS to maintain sorting
88
+ filtered_df = df[
89
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
90
+ ]
91
+ return filtered_df
92
+
93
+
94
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
95
+ final_df = []
96
+ if query != "":
97
+ queries = [q.strip() for q in query.split(";")]
98
+ for _q in queries:
99
+ _q = _q.strip()
100
+ if _q != "":
101
+ temp_filtered_df = search_table(filtered_df, _q)
102
+ if len(temp_filtered_df) > 0:
103
+ final_df.append(temp_filtered_df)
104
+ if len(final_df) > 0:
105
+ filtered_df = pd.concat(final_df)
106
+ filtered_df = filtered_df.drop_duplicates(
107
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
108
+ )
109
+
110
+ return filtered_df
111
+
112
+
113
+ def filter_models(
114
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
115
+ ) -> pd.DataFrame:
116
+ # Show all models
117
+ if show_deleted:
118
+ filtered_df = df
119
+ else: # Show only still on the hub models
120
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
121
+
122
+ type_emoji = [t[0] for t in type_query]
123
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
124
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
125
+
126
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
127
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
128
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
129
+ filtered_df = filtered_df.loc[mask]
130
+
131
+ return filtered_df
132
+
133
+
134
+ demo = gr.Blocks(css=custom_css)
135
+ with demo:
136
+ gr.HTML(TITLE)
137
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
138
+
139
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
140
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
141
+ with gr.Row():
142
+ with gr.Column():
143
+ with gr.Row():
144
+ search_bar = gr.Textbox(
145
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
146
+ show_label=False,
147
+ elem_id="search-bar",
148
+ )
149
+ with gr.Row():
150
+ shown_columns = gr.CheckboxGroup(
151
+ choices=[
152
+ c.name
153
+ for c in fields(AutoEvalColumn)
154
+ if not c.hidden and not c.never_hidden and not c.dummy
155
+ ],
156
+ value=[
157
+ c.name
158
+ for c in fields(AutoEvalColumn)
159
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
160
+ ],
161
+ label="Select columns to show",
162
+ elem_id="column-select",
163
+ interactive=True,
164
+ )
165
+ with gr.Row():
166
+ deleted_models_visibility = gr.Checkbox(
167
+ value=False, label="Show gated/private/deleted models", interactive=True
168
+ )
169
+ with gr.Column(min_width=320):
170
+ #with gr.Box(elem_id="box-filter"):
171
+ filter_columns_type = gr.CheckboxGroup(
172
+ label="Model types",
173
+ choices=[t.to_str() for t in ModelType],
174
+ value=[t.to_str() for t in ModelType],
175
+ interactive=True,
176
+ elem_id="filter-columns-type",
177
+ )
178
+ filter_columns_precision = gr.CheckboxGroup(
179
+ label="Precision",
180
+ choices=[i.value.name for i in Precision],
181
+ value=[i.value.name for i in Precision],
182
+ interactive=True,
183
+ elem_id="filter-columns-precision",
184
+ )
185
+ filter_columns_size = gr.CheckboxGroup(
186
+ label="Model sizes (in billions of parameters)",
187
+ choices=list(NUMERIC_INTERVALS.keys()),
188
+ value=list(NUMERIC_INTERVALS.keys()),
189
+ interactive=True,
190
+ elem_id="filter-columns-size",
191
+ )
192
+
193
+ leaderboard_table = gr.components.Dataframe(
194
+ value=leaderboard_df[
195
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
196
+ + shown_columns.value
197
+ + [AutoEvalColumn.dummy.name]
198
+ ],
199
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
+ datatype=TYPES,
201
+ elem_id="leaderboard-table",
202
+ interactive=False,
203
+ visible=True,
204
+ column_widths=["2%", "33%"]
205
+ )
206
+
207
+ # Dummy leaderboard for handling the case when the user uses backspace key
208
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
209
+ value=original_df[COLS],
210
+ headers=COLS,
211
+ datatype=TYPES,
212
+ visible=False,
213
+ )
214
+ search_bar.submit(
215
+ update_table,
216
+ [
217
+ hidden_leaderboard_table_for_search,
218
+ shown_columns,
219
+ filter_columns_type,
220
+ filter_columns_precision,
221
+ filter_columns_size,
222
+ deleted_models_visibility,
223
+ search_bar,
224
+ ],
225
+ leaderboard_table,
226
+ )
227
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
228
+ selector.change(
229
+ update_table,
230
+ [
231
+ hidden_leaderboard_table_for_search,
232
+ shown_columns,
233
+ filter_columns_type,
234
+ filter_columns_precision,
235
+ filter_columns_size,
236
+ deleted_models_visibility,
237
+ search_bar,
238
+ ],
239
+ leaderboard_table,
240
+ queue=True,
241
+ )
242
+
243
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
244
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
245
+
246
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
247
+ with gr.Column():
248
+ with gr.Row():
249
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
250
+
251
+ with gr.Column():
252
+ with gr.Accordion(
253
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
254
+ open=False,
255
+ ):
256
+ with gr.Row():
257
+ finished_eval_table = gr.components.Dataframe(
258
+ value=finished_eval_queue_df,
259
+ headers=EVAL_COLS,
260
+ datatype=EVAL_TYPES,
261
+ row_count=5,
262
+ )
263
+ with gr.Accordion(
264
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
265
+ open=False,
266
+ ):
267
+ with gr.Row():
268
+ running_eval_table = gr.components.Dataframe(
269
+ value=running_eval_queue_df,
270
+ headers=EVAL_COLS,
271
+ datatype=EVAL_TYPES,
272
+ row_count=5,
273
+ )
274
+
275
+ with gr.Accordion(
276
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
277
+ open=False,
278
+ ):
279
+ with gr.Row():
280
+ pending_eval_table = gr.components.Dataframe(
281
+ value=pending_eval_queue_df,
282
+ headers=EVAL_COLS,
283
+ datatype=EVAL_TYPES,
284
+ row_count=5,
285
+ )
286
+ with gr.Row():
287
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
288
+
289
+ with gr.Row():
290
+ with gr.Column():
291
+ model_name_textbox = gr.Textbox(label="Model name")
292
+ revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
293
+ model_type = gr.Dropdown(
294
+ choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
295
+ label="Model type",
296
+ multiselect=False,
297
+ value=None,
298
+ interactive=True,
299
+ )
300
+
301
+ with gr.Column():
302
+ precision = gr.Dropdown(
303
+ choices=[i.value.name for i in Precision if i != Precision.Unknown],
304
+ label="Precision",
305
+ multiselect=False,
306
+ value="float16",
307
+ interactive=True,
308
+ )
309
+ weight_type = gr.Dropdown(
310
+ choices=[i.value.name for i in WeightType],
311
+ label="Weights type",
312
+ multiselect=False,
313
+ value="Original",
314
+ interactive=True,
315
+ )
316
+ base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
317
+
318
+ submit_button = gr.Button("Submit Eval")
319
+ submission_result = gr.Markdown()
320
+ submit_button.click(
321
+ add_new_eval,
322
+ [
323
+ model_name_textbox,
324
+ base_model_name_textbox,
325
+ revision_name_textbox,
326
+ precision,
327
+ weight_type,
328
+ model_type,
329
+ ],
330
+ submission_result,
331
+ )
332
+
333
+ with gr.Row():
334
+ with gr.Accordion("📙 Citation", open=False):
335
+ citation_button = gr.Textbox(
336
+ value=CITATION_BUTTON_TEXT,
337
+ label=CITATION_BUTTON_LABEL,
338
+ lines=20,
339
+ elem_id="citation-button",
340
+ show_copy_button=True,
341
+ )
342
+
343
+ scheduler = BackgroundScheduler()
344
+ scheduler.add_job(restart_space, "interval", seconds=1800)
345
+ scheduler.start()
346
+ demo.queue(default_concurrency_limit=40).launch()
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ python-dateutil==2.8.2
12
+ requests==2.28.2
13
+ tqdm==4.65.0
14
+ transformers==4.35.2
15
+ tokenizers>=0.15.0
scripts/create_request_file.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ import re
5
+ from datetime import datetime, timezone
6
+
7
+ import click
8
+ from colorama import Fore
9
+ from huggingface_hub import HfApi, snapshot_download
10
+
11
+ EVAL_REQUESTS_PATH = "eval-queue"
12
+ QUEUE_REPO = "open-llm-leaderboard/requests"
13
+
14
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
15
+ model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
16
+ weight_types = ("Original", "Delta", "Adapter")
17
+
18
+
19
+ def get_model_size(model_info, precision: str):
20
+ size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
21
+ try:
22
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
23
+ except (AttributeError, TypeError):
24
+ try:
25
+ size_match = re.search(size_pattern, model_info.modelId.lower())
26
+ model_size = size_match.group(0)
27
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
28
+ except AttributeError:
29
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
30
+
31
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
32
+ model_size = size_factor * model_size
33
+ return model_size
34
+
35
+
36
+ def main():
37
+ api = HfApi()
38
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
40
+
41
+ model_name = click.prompt("Enter model name")
42
+ revision = click.prompt("Enter revision", default="main")
43
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
44
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
45
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
46
+ base_model = click.prompt("Enter base model", default="")
47
+ status = click.prompt("Enter status", default="FINISHED")
48
+
49
+ try:
50
+ model_info = api.model_info(repo_id=model_name, revision=revision)
51
+ except Exception as e:
52
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
53
+ return 1
54
+
55
+ model_size = get_model_size(model_info=model_info, precision=precision)
56
+
57
+ try:
58
+ license = model_info.cardData["license"]
59
+ except Exception:
60
+ license = "?"
61
+
62
+ eval_entry = {
63
+ "model": model_name,
64
+ "base_model": base_model,
65
+ "revision": revision,
66
+ "private": False,
67
+ "precision": precision,
68
+ "weight_type": weight_type,
69
+ "status": status,
70
+ "submitted_time": current_time,
71
+ "model_type": model_type,
72
+ "likes": model_info.likes,
73
+ "params": model_size,
74
+ "license": license,
75
+ }
76
+
77
+ user_name = ""
78
+ model_path = model_name
79
+ if "/" in model_name:
80
+ user_name = model_name.split("/")[0]
81
+ model_path = model_name.split("/")[1]
82
+
83
+ pprint.pprint(eval_entry)
84
+
85
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
86
+ click.echo("continuing...")
87
+
88
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
89
+ os.makedirs(out_dir, exist_ok=True)
90
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
91
+
92
+ with open(out_path, "w") as f:
93
+ f.write(json.dumps(eval_entry))
94
+
95
+ api.upload_file(
96
+ path_or_fileobj=out_path,
97
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
98
+ repo_id=QUEUE_REPO,
99
+ repo_type="dataset",
100
+ commit_message=f"Add {model_name} to eval queue",
101
+ )
102
+ else:
103
+ click.echo("aborting...")
104
+
105
+
106
+ if __name__ == "__main__":
107
+ main()
src/display/about.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+
11
+ # Init: to update with your specific keys
12
+ class Tasks(Enum):
13
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
14
+ task0 = Task("task_name1", "metric_name", "First task")
15
+ task1 = Task("task_name2", "metric_name", "Second task")
16
+
17
+
18
+ # Your leaderboard name
19
+ TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
20
+
21
+ # What does your leaderboard evaluate?
22
+ INTRODUCTION_TEXT = """
23
+ Intro text
24
+ """
25
+
26
+ # Which evaluations are you running? how can people reproduce what you have?
27
+ LLM_BENCHMARKS_TEXT = f"""
28
+ ## How it works
29
+
30
+ ## Reproducibility
31
+ To reproduce our results, here is the commands you can run:
32
+
33
+ """
34
+
35
+ EVALUATION_QUEUE_TEXT = """
36
+ ## Some good practices before submitting a model
37
+
38
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
39
+ ```python
40
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
41
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
42
+ model = AutoModel.from_pretrained("your model name", revision=revision)
43
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
44
+ ```
45
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
46
+
47
+ Note: make sure your model is public!
48
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
49
+
50
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
51
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
52
+
53
+ ### 3) Make sure your model has an open license!
54
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
55
+
56
+ ### 4) Fill up your model card
57
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
58
+
59
+ ## In case of model failure
60
+ If your model is displayed in the `FAILED` category, its execution stopped.
61
+ Make sure you have followed the above steps first.
62
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
63
+ """
64
+
65
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
66
+ CITATION_BUTTON_TEXT = r"""
67
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Hides the final AutoEvalColumn */
42
+ #llm-benchmark-tab-table table td:last-child,
43
+ #llm-benchmark-tab-table table th:last-child {
44
+ display: none;
45
+ }
46
+
47
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
48
+ table td:first-child,
49
+ table th:first-child {
50
+ max-width: 400px;
51
+ overflow: auto;
52
+ white-space: nowrap;
53
+ }
54
+
55
+ .tab-buttons button {
56
+ font-size: 20px;
57
+ }
58
+
59
+ #scale-logo {
60
+ border-style: none !important;
61
+ box-shadow: none;
62
+ display: block;
63
+ margin-left: auto;
64
+ margin-right: auto;
65
+ max-width: 600px;
66
+ }
67
+
68
+ #scale-logo .download {
69
+ display: none;
70
+ }
71
+ #filter_type{
72
+ border: 0;
73
+ padding-left: 0;
74
+ padding-top: 0;
75
+ }
76
+ #filter_type label {
77
+ display: flex;
78
+ }
79
+ #filter_type label > span{
80
+ margin-top: var(--spacing-lg);
81
+ margin-right: 0.5em;
82
+ }
83
+ #filter_type label > .wrap{
84
+ width: 103px;
85
+ }
86
+ #filter_type label > .wrap .wrap-inner{
87
+ padding: 2px;
88
+ }
89
+ #filter_type label > .wrap .wrap-inner input{
90
+ width: 1px
91
+ }
92
+ #filter-columns-type{
93
+ border:0;
94
+ padding:0.5;
95
+ }
96
+ #filter-columns-size{
97
+ border:0;
98
+ padding:0.5;
99
+ }
100
+ #box-filter > .form{
101
+ border: 0
102
+ }
103
+ """
104
+
105
+ get_window_url_params = """
106
+ function(url_params) {
107
+ const params = new URLSearchParams(window.location.search);
108
+ url_params = Object.fromEntries(params);
109
+ return url_params;
110
+ }
111
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime, timezone
3
+
4
+ from huggingface_hub import HfApi
5
+ from huggingface_hub.hf_api import ModelInfo
6
+
7
+
8
+ API = HfApi()
9
+
10
+ def model_hyperlink(link, model_name):
11
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
12
+
13
+
14
+ def make_clickable_model(model_name):
15
+ link = f"https://huggingface.co/{model_name}"
16
+ return model_hyperlink(link, model_name)
17
+
18
+
19
+ def styled_error(error):
20
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
21
+
22
+
23
+ def styled_warning(warn):
24
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
25
+
26
+
27
+ def styled_message(message):
28
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
29
+
30
+
31
+ def has_no_nan_values(df, columns):
32
+ return df[columns].notna().all(axis=1)
33
+
34
+
35
+ def has_nan_values(df, columns):
36
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.about import Tasks
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ # These classes are for user facing column names,
13
+ # to avoid having to change them all around the code
14
+ # when a modif is needed
15
+ @dataclass
16
+ class ColumnContent:
17
+ name: str
18
+ type: str
19
+ displayed_by_default: bool
20
+ hidden: bool = False
21
+ never_hidden: bool = False
22
+ dummy: bool = False
23
+
24
+ ## Leaderboard columns
25
+ auto_eval_column_dict = []
26
+ # Init
27
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
28
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+ #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
31
+ for task in Tasks:
32
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
+ # Model information
34
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
36
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
37
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
38
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
39
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
40
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
41
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
+ # Dummy column for the search bar (hidden by the custom CSS)
44
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
45
+
46
+ # We use make dataclass to dynamically fill the scores from Tasks
47
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
48
+
49
+ ## For the queue columns in the submission tab
50
+ @dataclass(frozen=True)
51
+ class EvalQueueColumn: # Queue column
52
+ model = ColumnContent("model", "markdown", True)
53
+ revision = ColumnContent("revision", "str", True)
54
+ private = ColumnContent("private", "bool", True)
55
+ precision = ColumnContent("precision", "str", True)
56
+ weight_type = ColumnContent("weight_type", "str", "Original")
57
+ status = ColumnContent("status", "str", True)
58
+
59
+ ## All the model information that we might need
60
+ @dataclass
61
+ class ModelDetails:
62
+ name: str
63
+ display_name: str = ""
64
+ symbol: str = "" # emoji
65
+
66
+
67
+ class ModelType(Enum):
68
+ PT = ModelDetails(name="pretrained", symbol="🟢")
69
+ FT = ModelDetails(name="fine-tuned", symbol="🔶")
70
+ IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
71
+ RL = ModelDetails(name="RL-tuned", symbol="🟦")
72
+ Unknown = ModelDetails(name="", symbol="?")
73
+
74
+ def to_str(self, separator=" "):
75
+ return f"{self.value.symbol}{separator}{self.value.name}"
76
+
77
+ @staticmethod
78
+ def from_str(type):
79
+ if "fine-tuned" in type or "🔶" in type:
80
+ return ModelType.FT
81
+ if "pretrained" in type or "🟢" in type:
82
+ return ModelType.PT
83
+ if "RL-tuned" in type or "🟦" in type:
84
+ return ModelType.RL
85
+ if "instruction-tuned" in type or "⭕" in type:
86
+ return ModelType.IFT
87
+ return ModelType.Unknown
88
+
89
+ class WeightType(Enum):
90
+ Adapter = ModelDetails("Adapter")
91
+ Original = ModelDetails("Original")
92
+ Delta = ModelDetails("Delta")
93
+
94
+ class Precision(Enum):
95
+ float16 = ModelDetails("float16")
96
+ bfloat16 = ModelDetails("bfloat16")
97
+ qt_8bit = ModelDetails("8bit")
98
+ qt_4bit = ModelDetails("4bit")
99
+ qt_GPTQ = ModelDetails("GPTQ")
100
+ Unknown = ModelDetails("?")
101
+
102
+ def from_str(precision):
103
+ if precision in ["torch.float16", "float16"]:
104
+ return Precision.float16
105
+ if precision in ["torch.bfloat16", "bfloat16"]:
106
+ return Precision.bfloat16
107
+ if precision in ["8bit"]:
108
+ return Precision.qt_8bit
109
+ if precision in ["4bit"]:
110
+ return Precision.qt_4bit
111
+ if precision in ["GPTQ", "None"]:
112
+ return Precision.qt_GPTQ
113
+ return Precision.Unknown
114
+
115
+ # Column selection
116
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
118
+ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
+ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
120
+
121
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
+
124
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
+
126
+ NUMERIC_INTERVALS = {
127
+ "?": pd.Interval(-1, 0, closed="right"),
128
+ "~1.5": pd.Interval(0, 2, closed="right"),
129
+ "~3": pd.Interval(2, 4, closed="right"),
130
+ "~7": pd.Interval(4, 9, closed="right"),
131
+ "~13": pd.Interval(9, 20, closed="right"),
132
+ "~35": pd.Interval(20, 45, closed="right"),
133
+ "~60": pd.Interval(45, 70, closed="right"),
134
+ "70+": pd.Interval(70, 10000, closed="right"),
135
+ }
src/envs.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # clone / pull the lmeh eval data
6
+ TOKEN = os.environ.get("TOKEN", None)
7
+
8
+ OWNER = "demo-leaderboard"
9
+ REPO_ID = f"{OWNER}/leaderboard"
10
+ QUEUE_REPO = f"{OWNER}/requests"
11
+ RESULTS_REPO = f"{OWNER}/results"
12
+
13
+ CACHE_PATH=os.getenv("HF_HOME", ".")
14
+
15
+ # Local caches
16
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
17
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
18
+
19
+ API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ eval_name: str # org_model_precision (uid)
18
+ full_model: str # org/model (path on hub)
19
+ org: str
20
+ model: str
21
+ revision: str # commit hash, "" if main
22
+ results: dict
23
+ precision: Precision = Precision.Unknown
24
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
25
+ weight_type: WeightType = WeightType.Original # Original or Adapter
26
+ architecture: str = "Unknown"
27
+ license: str = "?"
28
+ likes: int = 0
29
+ num_params: int = 0
30
+ date: str = "" # submission date of request file
31
+ still_on_hub: bool = False
32
+
33
+ @classmethod
34
+ def init_from_json_file(self, json_filepath):
35
+ """Inits the result from the specific model result file"""
36
+ with open(json_filepath) as fp:
37
+ data = json.load(fp)
38
+
39
+ config = data.get("config")
40
+
41
+ # Precision
42
+ precision = Precision.from_str(config.get("model_dtype"))
43
+
44
+ # Get model and org
45
+ org_and_model = config.get("model_name", config.get("model_args", None))
46
+ org_and_model = org_and_model.split("/", 1)
47
+
48
+ if len(org_and_model) == 1:
49
+ org = None
50
+ model = org_and_model[0]
51
+ result_key = f"{model}_{precision.value.name}"
52
+ else:
53
+ org = org_and_model[0]
54
+ model = org_and_model[1]
55
+ result_key = f"{org}_{model}_{precision.value.name}"
56
+ full_model = "/".join(org_and_model)
57
+
58
+ still_on_hub, _, model_config = is_model_on_hub(
59
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
60
+ )
61
+ architecture = "?"
62
+ if model_config is not None:
63
+ architectures = getattr(model_config, "architectures", None)
64
+ if architectures:
65
+ architecture = ";".join(architectures)
66
+
67
+ # Extract results available in this file (some results are split in several files)
68
+ results = {}
69
+ for task in Tasks:
70
+ task = task.value
71
+
72
+ # We average all scores of a given metric (not all metrics are present in all files)
73
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
74
+ if accs.size == 0 or any([acc is None for acc in accs]):
75
+ continue
76
+
77
+ mean_acc = np.mean(accs) * 100.0
78
+ results[task.benchmark] = mean_acc
79
+
80
+ return self(
81
+ eval_name=result_key,
82
+ full_model=full_model,
83
+ org=org,
84
+ model=model,
85
+ results=results,
86
+ precision=precision,
87
+ revision= config.get("model_sha", ""),
88
+ still_on_hub=still_on_hub,
89
+ architecture=architecture
90
+ )
91
+
92
+ def update_with_request_file(self, requests_path):
93
+ """Finds the relevant request file for the current model and updates info with it"""
94
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
95
+
96
+ try:
97
+ with open(request_file, "r") as f:
98
+ request = json.load(f)
99
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
100
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
101
+ self.license = request.get("license", "?")
102
+ self.likes = request.get("likes", 0)
103
+ self.num_params = request.get("params", 0)
104
+ self.date = request.get("submitted_time", "")
105
+ except Exception:
106
+ print(f"Could not find request file for {self.org}/{self.model}")
107
+
108
+ def to_dict(self):
109
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
110
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
111
+ data_dict = {
112
+ "eval_name": self.eval_name, # not a column, just a save name,
113
+ AutoEvalColumn.precision.name: self.precision.value.name,
114
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
115
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
116
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
117
+ AutoEvalColumn.architecture.name: self.architecture,
118
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
119
+ AutoEvalColumn.dummy.name: self.full_model,
120
+ AutoEvalColumn.revision.name: self.revision,
121
+ AutoEvalColumn.average.name: average,
122
+ AutoEvalColumn.license.name: self.license,
123
+ AutoEvalColumn.likes.name: self.likes,
124
+ AutoEvalColumn.params.name: self.num_params,
125
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
126
+ }
127
+
128
+ for task in Tasks:
129
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
130
+
131
+ return data_dict
132
+
133
+
134
+ def get_request_file_for_model(requests_path, model_name, precision):
135
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
136
+ request_files = os.path.join(
137
+ requests_path,
138
+ f"{model_name}_eval_request_*.json",
139
+ )
140
+ request_files = glob.glob(request_files)
141
+
142
+ # Select correct request file (precision)
143
+ request_file = ""
144
+ request_files = sorted(request_files, reverse=True)
145
+ for tmp_request_file in request_files:
146
+ with open(tmp_request_file, "r") as f:
147
+ req_content = json.load(f)
148
+ if (
149
+ req_content["status"] in ["FINISHED"]
150
+ and req_content["precision"] == precision.split(".")[-1]
151
+ ):
152
+ request_file = tmp_request_file
153
+ return request_file
154
+
155
+
156
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
157
+ """From the path of the results folder root, extract all needed info for results"""
158
+ model_result_filepaths = []
159
+
160
+ for root, _, files in os.walk(results_path):
161
+ # We should only have json files in model results
162
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
163
+ continue
164
+
165
+ # Sort the files by date
166
+ try:
167
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
168
+ except dateutil.parser._parser.ParserError:
169
+ files = [files[-1]]
170
+
171
+ for file in files:
172
+ model_result_filepaths.append(os.path.join(root, file))
173
+
174
+ eval_results = {}
175
+ for model_result_filepath in model_result_filepaths:
176
+ # Creation of result
177
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
178
+ eval_result.update_with_request_file(requests_path)
179
+
180
+ # Store results of same eval together
181
+ eval_name = eval_result.eval_name
182
+ if eval_name in eval_results.keys():
183
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
184
+ else:
185
+ eval_results[eval_name] = eval_result
186
+
187
+ results = []
188
+ for v in eval_results.values():
189
+ try:
190
+ v.to_dict() # we test if the dict version is complete
191
+ results.append(v)
192
+ except KeyError: # not all eval values present
193
+ continue
194
+
195
+ return results
src/populate.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+
10
+
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
+ raw_data = get_raw_eval_results(results_path, requests_path)
13
+ all_data_json = [v.to_dict() for v in raw_data]
14
+
15
+ df = pd.DataFrame.from_records(all_data_json)
16
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
17
+ df = df[cols].round(decimals=2)
18
+
19
+ # filter out if any of the benchmarks have not been produced
20
+ df = df[has_no_nan_values(df, benchmark_cols)]
21
+ return raw_data, df
22
+
23
+
24
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
25
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
26
+ all_evals = []
27
+
28
+ for entry in entries:
29
+ if ".json" in entry:
30
+ file_path = os.path.join(save_path, entry)
31
+ with open(file_path) as fp:
32
+ data = json.load(fp)
33
+
34
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
35
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
36
+
37
+ all_evals.append(data)
38
+ elif ".md" not in entry:
39
+ # this is a folder
40
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
41
+ for sub_entry in sub_entries:
42
+ file_path = os.path.join(save_path, entry, sub_entry)
43
+ with open(file_path) as fp:
44
+ data = json.load(fp)
45
+
46
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
47
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
48
+ all_evals.append(data)
49
+
50
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
51
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
52
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
53
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
54
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
55
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
56
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/submission/check_validity.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
12
+
13
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
+ try:
16
+ card = ModelCard.load(repo_id)
17
+ except huggingface_hub.utils.EntryNotFoundError:
18
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
+
20
+ # Enforce license metadata
21
+ if card.data.license is None:
22
+ if not ("license_name" in card.data and "license_link" in card.data):
23
+ return False, (
24
+ "License not found. Please add a license to your model card using the `license` metadata or a"
25
+ " `license_name`/`license_link` pair."
26
+ )
27
+
28
+ # Enforce card content
29
+ if len(card.text) < 200:
30
+ return False, "Please add a description to your model card, it is too short."
31
+
32
+ return True, ""
33
+
34
+
35
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
36
+ """Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)"""
37
+ try:
38
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
39
+ if test_tokenizer:
40
+ tokenizer_config = get_tokenizer_config(model_name)
41
+ if tokenizer_config is not None:
42
+ tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
43
+ else:
44
+ tokenizer_class_candidate = config.tokenizer_class
45
+
46
+
47
+ tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
48
+ if tokenizer_class is None:
49
+ return (
50
+ False,
51
+ f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.",
52
+ None
53
+ )
54
+ return True, None, config
55
+
56
+ except ValueError:
57
+ return (
58
+ False,
59
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
60
+ None
61
+ )
62
+
63
+ except Exception as e:
64
+ return False, "was not found on hub!", None
65
+
66
+
67
+ def get_model_size(model_info: ModelInfo, precision: str):
68
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
69
+ try:
70
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
71
+ except (AttributeError, TypeError):
72
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
73
+
74
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
75
+ model_size = size_factor * model_size
76
+ return model_size
77
+
78
+ def get_model_arch(model_info: ModelInfo):
79
+ """Gets the model architecture from the configuration"""
80
+ return model_info.config.get("architectures", "Unknown")
81
+
82
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
83
+ depth = 1
84
+ file_names = []
85
+ users_to_submission_dates = defaultdict(list)
86
+
87
+ for root, _, files in os.walk(requested_models_dir):
88
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
89
+ if current_depth == depth:
90
+ for file in files:
91
+ if not file.endswith(".json"):
92
+ continue
93
+ with open(os.path.join(root, file), "r") as f:
94
+ info = json.load(f)
95
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
96
+
97
+ # Select organisation
98
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
99
+ continue
100
+ organisation, _ = info["model"].split("/")
101
+ users_to_submission_dates[organisation].append(info["submitted_time"])
102
+
103
+ return set(file_names), users_to_submission_dates
src/submission/submit.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
+ from src.submission.check_validity import (
8
+ already_submitted_models,
9
+ check_model_card,
10
+ get_model_size,
11
+ is_model_on_hub,
12
+ )
13
+
14
+ REQUESTED_MODELS = None
15
+ USERS_TO_SUBMISSION_DATES = None
16
+
17
+ def add_new_eval(
18
+ model: str,
19
+ base_model: str,
20
+ revision: str,
21
+ precision: str,
22
+ weight_type: str,
23
+ model_type: str,
24
+ ):
25
+ global REQUESTED_MODELS
26
+ global USERS_TO_SUBMISSION_DATES
27
+ if not REQUESTED_MODELS:
28
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
+
30
+ user_name = ""
31
+ model_path = model
32
+ if "/" in model:
33
+ user_name = model.split("/")[0]
34
+ model_path = model.split("/")[1]
35
+
36
+ precision = precision.split(" ")[0]
37
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
+
39
+ if model_type is None or model_type == "":
40
+ return styled_error("Please select a model type.")
41
+
42
+ # Does the model actually exist?
43
+ if revision == "":
44
+ revision = "main"
45
+
46
+ # Is the model on the hub?
47
+ if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
+ if not base_model_on_hub:
50
+ return styled_error(f'Base model "{base_model}" {error}')
51
+
52
+ if not weight_type == "Adapter":
53
+ model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
54
+ if not model_on_hub:
55
+ return styled_error(f'Model "{model}" {error}')
56
+
57
+ # Is the model info correctly filled?
58
+ try:
59
+ model_info = API.model_info(repo_id=model, revision=revision)
60
+ except Exception:
61
+ return styled_error("Could not get your model information. Please fill it up properly.")
62
+
63
+ model_size = get_model_size(model_info=model_info, precision=precision)
64
+
65
+ # Were the model card and license filled?
66
+ try:
67
+ license = model_info.cardData["license"]
68
+ except Exception:
69
+ return styled_error("Please select a license for your model")
70
+
71
+ modelcard_OK, error_msg = check_model_card(model)
72
+ if not modelcard_OK:
73
+ return styled_error(error_msg)
74
+
75
+ # Seems good, creating the eval
76
+ print("Adding new eval")
77
+
78
+ eval_entry = {
79
+ "model": model,
80
+ "base_model": base_model,
81
+ "revision": revision,
82
+ "precision": precision,
83
+ "weight_type": weight_type,
84
+ "status": "PENDING",
85
+ "submitted_time": current_time,
86
+ "model_type": model_type,
87
+ "likes": model_info.likes,
88
+ "params": model_size,
89
+ "license": license,
90
+ }
91
+
92
+ # Check for duplicate submission
93
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
94
+ return styled_warning("This model has been already submitted.")
95
+
96
+ print("Creating eval file")
97
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
98
+ os.makedirs(OUT_DIR, exist_ok=True)
99
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
100
+
101
+ with open(out_path, "w") as f:
102
+ f.write(json.dumps(eval_entry))
103
+
104
+ print("Uploading eval file")
105
+ API.upload_file(
106
+ path_or_fileobj=out_path,
107
+ path_in_repo=out_path.split("eval-queue/")[1],
108
+ repo_id=QUEUE_REPO,
109
+ repo_type="dataset",
110
+ commit_message=f"Add {model} to eval queue",
111
+ )
112
+
113
+ # Remove the local file
114
+ os.remove(out_path)
115
+
116
+ return styled_message(
117
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
118
+ )