""" ein notation: b - batch n - sequence nt - text sequence nw - raw wave length d - dimension """ from __future__ import annotations import torch from torch import nn import torch.nn.functional as F from x_transformers.x_transformers import RotaryEmbedding from model.modules import ( TimestepEmbedding, ConvNeXtV2Block, ConvPositionEmbedding, DiTBlock, AdaLayerNormZero_Final, precompute_freqs_cis, get_pos_embed_indices, ) # Text embedding class TextEmbedding(nn.Module): def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2): super().__init__() self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token if conv_layers > 0: self.extra_modeling = True self.precompute_max_pos = 4096 # ~44s of 24khz audio self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]) else: self.extra_modeling = False def forward(self, text: int['b nt'], seq_len, drop_text = False): batch, text_len = text.shape[0], text.shape[1] text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens text = F.pad(text, (0, seq_len - text_len), value = 0) if drop_text: # cfg for text text = torch.zeros_like(text) text = self.text_embed(text) # b n -> b n d # possible extra modeling if self.extra_modeling: # sinus pos emb batch_start = torch.zeros((batch,), dtype=torch.long) pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) text_pos_embed = self.freqs_cis[pos_idx] text = text + text_pos_embed # convnextv2 blocks text = self.text_blocks(text) return text # noised input audio and context mixing embedding class InputEmbedding(nn.Module): def __init__(self, mel_dim, text_dim, out_dim): super().__init__() self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim) def forward(self, x: float['b n d'], cond: float['b n d'], text_embed: float['b n d'], drop_audio_cond = False): if drop_audio_cond: # cfg for cond audio cond = torch.zeros_like(cond) x = self.proj(torch.cat((x, cond, text_embed), dim = -1)) x = self.conv_pos_embed(x) + x return x # Transformer backbone using DiT blocks class DiT(nn.Module): def __init__(self, *, dim, depth = 8, heads = 8, dim_head = 64, dropout = 0.1, ff_mult = 4, mel_dim = 100, text_num_embeds = 256, text_dim = None, conv_layers = 0, long_skip_connection = False, ): super().__init__() self.time_embed = TimestepEmbedding(dim) if text_dim is None: text_dim = mel_dim self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers = conv_layers) self.input_embed = InputEmbedding(mel_dim, text_dim, dim) self.rotary_embed = RotaryEmbedding(dim_head) self.dim = dim self.depth = depth self.transformer_blocks = nn.ModuleList( [ DiTBlock( dim = dim, heads = heads, dim_head = dim_head, ff_mult = ff_mult, dropout = dropout ) for _ in range(depth) ] ) self.long_skip_connection = nn.Linear(dim * 2, dim, bias = False) if long_skip_connection else None self.norm_out = AdaLayerNormZero_Final(dim) # final modulation self.proj_out = nn.Linear(dim, mel_dim) def forward( self, x: float['b n d'], # nosied input audio cond: float['b n d'], # masked cond audio text: int['b nt'], # text time: float['b'] | float[''], # time step drop_audio_cond, # cfg for cond audio drop_text, # cfg for text mask: bool['b n'] | None = None, ): batch, seq_len = x.shape[0], x.shape[1] if time.ndim == 0: time = time.repeat(batch) # t: conditioning time, c: context (text + masked cond audio), x: noised input audio t = self.time_embed(time) text_embed = self.text_embed(text, seq_len, drop_text = drop_text) x = self.input_embed(x, cond, text_embed, drop_audio_cond = drop_audio_cond) rope = self.rotary_embed.forward_from_seq_len(seq_len) if self.long_skip_connection is not None: residual = x for block in self.transformer_blocks: x = block(x, t, mask = mask, rope = rope) if self.long_skip_connection is not None: x = self.long_skip_connection(torch.cat((x, residual), dim = -1)) x = self.norm_out(x, t) output = self.proj_out(x) return output