|
|
|
import gradio as gr |
|
import os |
|
import torch |
|
|
|
from model import create_effnetb2_model |
|
from timeit import default_timer as timer |
|
from typing import Tuple, Dict |
|
|
|
|
|
with open("class_names.txt", "r") as f: |
|
class_names = [food_name.strip() for food_name in f.readlines()] |
|
|
|
|
|
|
|
|
|
effnetb2, effnetb2_transforms = create_effnetb2_model( |
|
num_classes=101, |
|
) |
|
|
|
|
|
effnetb2.load_state_dict( |
|
torch.load( |
|
f="effnetb2_food101_20percent.pth", |
|
map_location=torch.device("cpu"), |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def predict(img) -> Tuple[Dict, float]: |
|
"""Transforms and performs a prediction on img and returns prediction and time taken.""" |
|
|
|
start_time = timer() |
|
|
|
|
|
img = effnetb2_transforms(img).unsqueeze(0) |
|
|
|
|
|
effnetb2.eval() |
|
with torch.inference_mode(): |
|
|
|
pred_probs = torch.softmax(effnetb2(img), dim=1) |
|
|
|
|
|
pred_labels_and_probs = { |
|
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) |
|
} |
|
|
|
|
|
pred_time = round(timer() - start_time, 5) |
|
|
|
|
|
return pred_labels_and_probs, pred_time |
|
|
|
|
|
|
|
|
|
|
|
title = "๐TasteNet๐๐" |
|
description = "A computer vision model based on EfficientNetB2 designed for the classification of food images into 101 specific classes." |
|
|
|
|
|
example_list = [["examples/" + example] for example in os.listdir("examples")] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[ |
|
gr.Label(num_top_classes=5, label="Predictions"), |
|
gr.Number(label="Prediction time (s)"), |
|
], |
|
examples=example_list, |
|
title=title, |
|
description=description, |
|
) |
|
|
|
|
|
demo.launch() |
|
|