Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
model = YOLO("best_model.pt") | |
example_imgs = [ | |
os.path.join("example", "img", example) for example in os.listdir("example/img") | |
] | |
example_vids = [ | |
os.path.join("example", "vid", example) for example in os.listdir("example/vid") | |
] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA, | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for det in results.boxes.xyxy: | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA, | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Define the Gradio interface for image input | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=gr.components.Image(type="filepath", label="Input Image"), | |
outputs=gr.components.Image(type="numpy", label="Output Image"), | |
title="Pothole Detector - Image", | |
examples=example_imgs, | |
cache_examples=False, | |
) | |
# For video processing, it's best to process and then show the output video. | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for det in results.boxes.xyxy: | |
cv2.rectangle( | |
frame_copy, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
else: | |
break | |
cap.release() | |
inputs_video = gr.components.Video(label="Input Video") | |
outputs_video = gr.components.Image(label="Output Image", type="numpy") | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Pothole Detector", | |
examples=example_vids, | |
cache_examples=False, | |
) | |
# Combine the interfaces into a tabbed interface | |
gr.TabbedInterface( | |
[interface_image, interface_video], tab_names=["Image Inference", "Video Inference"] | |
).launch() | |