import gradio as gr import cv2 import requests import os from ultralytics import YOLO model = YOLO("best_model.pt") example_imgs = [ os.path.join("example", "img", example) for example in os.listdir("example/img") ] example_vids = [ os.path.join("example", "vid", example) for example in os.listdir("example/vid") ] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA, ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for det in results.boxes.xyxy: cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA, ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Define the Gradio interface for image input interface_image = gr.Interface( fn=show_preds_image, inputs=gr.components.Image(type="filepath", label="Input Image"), outputs=gr.components.Image(type="numpy", label="Output Image"), title="Pothole Detector - Image", examples=example_imgs, cache_examples=False, ) # For video processing, it's best to process and then show the output video. # This is a simplified placeholder for video processing, indicating where to include the video processing logic. def show_preds_video(video_path): # Placeholder for video processing function # Process the video here and save the output, then return the path to the processed video processed_video_path = "processed_video.mp4" # Example output path return processed_video_path # Define the Gradio interface for video input interface_video = gr.Interface( fn=show_preds_video, inputs=gr.components.Video(label="Input Video"), outputs=gr.components.Video(label="Processed Video"), title="Pothole Detector - Video", examples=example_vids, cache_examples=False, ) # Combine the interfaces into a tabbed interface gr.TabbedInterface( [interface_image, interface_video], tab_names=["Image Inference", "Video Inference"] ).launch()