File size: 2,365 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import bisect
from typing import List, Sequence, Tuple


def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
    r"""
    Finds the index of largest number that fits into the knapsack with the given capacity.
    """
    index = bisect.bisect(numbers, capacity)
    return -1 if index == 0 else (index - 1)


def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
    r"""
    An efficient greedy algorithm with binary search for the knapsack problem.
    """
    numbers.sort()  # sort numbers in ascending order for binary search
    knapsacks = []

    while numbers:
        current_knapsack = []
        remaining_capacity = capacity

        while True:
            index = search_for_fit(numbers, remaining_capacity)
            if index == -1:
                break  # no more numbers fit in this knapsack

            remaining_capacity -= numbers[index]  # update the remaining capacity
            current_knapsack.append(numbers.pop(index))  # add the number to knapsack

        knapsacks.append(current_knapsack)

    return knapsacks


def infer_seqlen(source_len: int, target_len: int, cutoff_len: int) -> Tuple[int, int]:
    r"""
    Computes the real sequence length after truncation by the cutoff_len.
    """
    if target_len * 2 < cutoff_len:  # truncate source
        max_target_len = cutoff_len
    elif source_len * 2 < cutoff_len:  # truncate target
        max_target_len = cutoff_len - source_len
    else:  # truncate both
        max_target_len = int(cutoff_len * (target_len / (source_len + target_len)))

    new_target_len = min(max_target_len, target_len)
    max_source_len = max(cutoff_len - new_target_len, 0)
    new_source_len = min(max_source_len, source_len)
    return new_source_len, new_target_len