realaer's picture
Upload folder using huggingface_hub
f6f64ac verified
raw
history blame
5.35 kB
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .processor_utils import infer_seqlen
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput, VideoInput
from ..template import Template
logger = get_logger(__name__)
def _encode_feedback_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
kl_response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
cutoff_len: int,
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
if response[0]["content"]: # desired example
kto_tag = True
messages = prompt + [response[0]]
else: # undesired example
kto_tag = False
messages = prompt + [response[1]]
if kl_response[0]["content"]:
kl_messages = prompt + [kl_response[0]]
else:
kl_messages = prompt + [kl_response[1]]
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
prompt_ids = prompt_ids[:source_len]
response_ids = response_ids[:target_len]
kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), cutoff_len)
kl_prompt_ids = kl_prompt_ids[:kl_source_len]
kl_response_ids = kl_response_ids[:kl_target_len]
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * source_len + response_ids
kl_input_ids = kl_prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
def preprocess_feedback_dataset(
examples: Dict[str, List[Any]],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Dict[str, List[Any]]:
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
kl_response = examples["_response"][::-1]
model_inputs = defaultdict(list)
for i in range(len(examples["_prompt"])):
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i]))
continue
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
prompt=examples["_prompt"][i],
response=examples["_response"][i],
kl_response=kl_response[i],
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
cutoff_len=data_args.cutoff_len,
)
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
model_inputs["kl_input_ids"].append(kl_input_ids)
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
model_inputs["kl_labels"].append(kl_labels)
model_inputs["kto_tags"].append(kto_tag)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
if desirable_num == 0 or undesirable_num == 0:
logger.warning("Your dataset only has one preference type.")
return model_inputs