# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .processor_utils import greedy_knapsack, infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..mm_plugin import ImageInput, VideoInput from ..template import Template logger = get_logger(__name__) def _encode_supervised_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], cutoff_len: int, train_on_prompt: bool, mask_history: bool, ) -> Tuple[List[int], List[int]]: messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor) input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor) encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools) total_length = len(input_ids) + (1 if template.efficient_eos else 0) if mask_history: encoded_pairs = encoded_pairs[::-1] # high priority for last turns for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): if total_length >= cutoff_len: break source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), cutoff_len - total_length) source_ids = source_ids[:source_len] target_ids = target_ids[:target_len] total_length += source_len + target_len if train_on_prompt: source_label = source_ids elif template.efficient_eos: source_label = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1) else: source_label = [IGNORE_INDEX] * source_len if mask_history and turn_idx != 0: # train on the last turn only target_label = [IGNORE_INDEX] * target_len else: target_label = target_ids if mask_history: # reversed sequences input_ids = source_ids + target_ids + input_ids labels = source_label + target_label + labels else: input_ids += source_ids + target_ids labels += source_label + target_label if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] return input_ids, labels def preprocess_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[Any]]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) continue input_ids, labels = _encode_supervised_example( prompt=examples["_prompt"][i], response=examples["_response"][i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], template=template, tokenizer=tokenizer, processor=processor, cutoff_len=data_args.cutoff_len, train_on_prompt=data_args.train_on_prompt, mask_history=data_args.mask_history, ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) model_inputs["images"].append(examples["_images"][i]) model_inputs["videos"].append(examples["_videos"][i]) return model_inputs def preprocess_packed_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[Any]]: # TODO: use `position_ids` to achieve packing # build inputs with format ` X1 Y1 X2 Y2 ` # and labels with format ` ... Y1 ... Y2 ` valid_num = 0 batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], [] lengths = [] length2indexes = defaultdict(list) for i in range(len(examples["_prompt"])): if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])) continue input_ids, labels = _encode_supervised_example( prompt=examples["_prompt"][i], response=examples["_response"][i], system=examples["_system"][i], tools=examples["_tools"][i], images=examples["_images"][i] or [], videos=examples["_videos"][i] or [], template=template, tokenizer=tokenizer, processor=processor, cutoff_len=data_args.cutoff_len - 1, # reserved for the padding token train_on_prompt=data_args.train_on_prompt, mask_history=data_args.mask_history, ) length = len(input_ids) if length > data_args.cutoff_len: logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) else: lengths.append(length) length2indexes[length].append(valid_num) batch_input_ids.append(input_ids) batch_labels.append(labels) batch_images.append(examples["_images"][i] or []) batch_videos.append(examples["_videos"][i] or []) valid_num += 1 model_inputs = defaultdict(list) knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token for knapsack in knapsacks: packed_input_ids, packed_attention_masks, packed_labels = [], [], [] packed_images, packed_videos = [], [] for i, length in enumerate(knapsack): index = length2indexes[length].pop() packed_input_ids += batch_input_ids[index] packed_labels += batch_labels[index] packed_images += batch_images[index] packed_videos += batch_videos[index] if data_args.neat_packing: packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1 else: packed_attention_masks += [1] * len(batch_input_ids[index]) if len(packed_input_ids) < data_args.cutoff_len: pad_length = data_args.cutoff_len - len(packed_input_ids) packed_input_ids += [tokenizer.pad_token_id] * pad_length packed_labels += [IGNORE_INDEX] * pad_length if data_args.neat_packing: packed_attention_masks += [0] * pad_length else: packed_attention_masks += [1] * pad_length # more efficient flash_attn if len(packed_input_ids) != data_args.cutoff_len: raise ValueError("The length of packed example should be identical to the cutoff length.") model_inputs["input_ids"].append(packed_input_ids) model_inputs["attention_mask"].append(packed_attention_masks) model_inputs["labels"].append(packed_labels) model_inputs["images"].append(packed_images or None) model_inputs["videos"].append(packed_videos or None) return model_inputs def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))