# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import partial from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union from ..extras.logging import get_logger from .data_utils import Role if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import Seq2SeqTrainingArguments from ..hparams import DataArguments from .mm_plugin import ImageInput, VideoInput from .parser import DatasetAttr logger = get_logger(__name__) def _convert_images( images: Sequence["ImageInput"], dataset_attr: "DatasetAttr", data_args: "DataArguments", ) -> Optional[List["ImageInput"]]: r""" Optionally concatenates image path to dataset dir when loading from local disk. """ if len(images) == 0: return None images = images[:] if dataset_attr.load_from in ["script", "file"]: for i in range(len(images)): if isinstance(images[i], str) and os.path.isfile(os.path.join(data_args.dataset_dir, images[i])): images[i] = os.path.join(data_args.dataset_dir, images[i]) return images def _convert_videos( videos: Sequence["VideoInput"], dataset_attr: "DatasetAttr", data_args: "DataArguments", ) -> Optional[List["VideoInput"]]: r""" Optionally concatenates video path to dataset dir when loading from local disk. """ if len(videos) == 0: return None videos = videos[:] if dataset_attr.load_from in ["script", "file"]: for i in range(len(videos)): if isinstance(videos[i], str) and os.path.isfile(os.path.join(data_args.dataset_dir, videos[i])): videos[i] = os.path.join(data_args.dataset_dir, videos[i]) return videos def convert_alpaca( example: Dict[str, Any], dataset_attr: "DatasetAttr", data_args: "DataArguments", ) -> Dict[str, Any]: r""" Converts alpaca format dataset to the standard format. """ prompt = [] if dataset_attr.history and isinstance(example[dataset_attr.history], list): for old_prompt, old_response in example[dataset_attr.history]: prompt.append({"role": Role.USER.value, "content": old_prompt}) prompt.append({"role": Role.ASSISTANT.value, "content": old_response}) query = [] if dataset_attr.prompt and example[dataset_attr.prompt]: query.append(example[dataset_attr.prompt]) if dataset_attr.query and example[dataset_attr.query]: query.append(example[dataset_attr.query]) prompt.append({"role": Role.USER.value, "content": "\n".join(query)}) # "prompt\nquery" if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}] if example[dataset_attr.kto_tag]: response = response + [{"role": Role.ASSISTANT.value, "content": ""}] else: response = [{"role": Role.ASSISTANT.value, "content": ""}] + response elif ( dataset_attr.ranking and isinstance(example[dataset_attr.chosen], str) and isinstance(example[dataset_attr.rejected], str) ): # pairwise example response = [ {"role": Role.ASSISTANT.value, "content": example[dataset_attr.chosen]}, {"role": Role.ASSISTANT.value, "content": example[dataset_attr.rejected]}, ] elif dataset_attr.response and isinstance(example[dataset_attr.response], str): # normal example response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}] else: # unsupervised response = [] convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args) convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args) output = { "_prompt": prompt, "_response": response, "_system": example[dataset_attr.system] if dataset_attr.system else "", "_tools": example[dataset_attr.tools] if dataset_attr.tools else "", "_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None, "_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None, } return output def convert_sharegpt( example: Dict[str, Any], dataset_attr: "DatasetAttr", data_args: "DataArguments", ) -> Dict[str, Any]: r""" Converts sharegpt format dataset to the standard format. """ tag_mapping = { dataset_attr.user_tag: Role.USER.value, dataset_attr.assistant_tag: Role.ASSISTANT.value, dataset_attr.observation_tag: Role.OBSERVATION.value, dataset_attr.function_tag: Role.FUNCTION.value, dataset_attr.system_tag: Role.SYSTEM.value, } odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag) even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag) accept_tags = (odd_tags, even_tags) messages = example[dataset_attr.messages] if ( dataset_attr.system_tag and len(messages) != 0 and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag ): system = messages[0][dataset_attr.content_tag] messages = messages[1:] else: system = example[dataset_attr.system] if dataset_attr.system else "" aligned_messages = [] broken_data = False for turn_idx, message in enumerate(messages): if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]: logger.warning("Invalid role tag in {}.".format(messages)) broken_data = True aligned_messages.append( {"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]} ) if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or ( dataset_attr.ranking and len(aligned_messages) % 2 == 0 ): logger.warning("Invalid message count in {}.".format(messages)) broken_data = True if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example prompt = aligned_messages[:-1] response = aligned_messages[-1:] if example[dataset_attr.kto_tag]: response = response + [{"role": Role.ASSISTANT.value, "content": ""}] else: response = [{"role": Role.ASSISTANT.value, "content": ""}] + response elif ( dataset_attr.ranking and isinstance(example[dataset_attr.chosen], dict) and isinstance(example[dataset_attr.rejected], dict) ): # pairwise example chosen = example[dataset_attr.chosen] rejected = example[dataset_attr.rejected] if ( chosen[dataset_attr.role_tag] not in accept_tags[-1] or rejected[dataset_attr.role_tag] not in accept_tags[-1] ): logger.warning("Invalid role tag in {}.".format([chosen, rejected])) broken_data = True prompt = aligned_messages response = [ {"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]}, {"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]}, ] else: # normal example prompt = aligned_messages[:-1] response = aligned_messages[-1:] if broken_data: logger.warning("Skipping this abnormal example.") prompt, response = [], [] convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args) convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args) output = { "_prompt": prompt, "_response": response, "_system": system, "_tools": example[dataset_attr.tools] if dataset_attr.tools else "", "_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None, "_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None, } return output def align_dataset( dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", ) -> Union["Dataset", "IterableDataset"]: r""" Aligned dataset: _prompt: [{"role": "user", "content": "..."}] * (2T - 1) _response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset) _system: "..." _tools: "...", _images: [], _videos: [], """ if dataset_attr.formatting == "alpaca": convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args) else: convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args) column_names = list(next(iter(dataset)).keys()) kwargs = {} if not data_args.streaming: kwargs = dict( num_proc=data_args.preprocessing_num_workers, load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), desc="Converting format of dataset", ) return dataset.map( convert_func, batched=False, remove_columns=column_names, **kwargs, )