File size: 15,976 Bytes
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96af654
 
915f69b
 
 
 
 
 
 
 
 
3a7d40d
 
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbf7cc7
 
915f69b
 
 
 
4a77b25
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4a8c3a
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e47b08e
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import tyro
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import rembg
import gradio as gr

import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
from core.utils import get_rays, grid_distortion, orbit_camera_jitter

from core.options import AllConfigs, Options
from core.models import LTRFM_Mesh,LTRFM_NeRF
from core.instant_utils.mesh_util import save_obj, save_obj_with_mtl
from mvdream.pipeline_mvdream import MVDreamPipeline
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from huggingface_hub import hf_hub_download

import spaces

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
GRADIO_VIDEO_PATH = 'gradio_output.mp4'
GRADIO_OBJ_PATH = 'gradio_output_rgb.obj'
GRADIO_OBJ_ALBEDO_PATH = 'gradio_output_albedo.obj'
GRADIO_OBJ_SHADING_PATH = 'gradio_output_shading.obj'

#opt = tyro.cli(AllConfigs)

ckpt_path = hf_hub_download(repo_id="rgxie/LDM", filename="LDM6v01.ckpt")
#ckpt_path = '/ssd3/xrg/tensor23d/pretrained/last_6view_0610_14.ckpt'

opt = Options(
    input_size=512, 
    down_channels=(32, 64, 128, 256, 512),
    down_attention=(False, False, False, False, True),
    up_channels=(512, 256, 128),
    up_attention=(True, False, False, False),
    volume_mode='TRF_NeRF',
    splat_size=64,
    output_size=62, #crop patch
    data_mode='s5',
    num_views=8,
    gradient_accumulation_steps=1,  #2
    mixed_precision='bf16',
    resume=ckpt_path,
)


# model
if opt.volume_mode == 'TRF_Mesh':
    model = LTRFM_Mesh(opt)
elif opt.volume_mode == 'TRF_NeRF':
    model = LTRFM_NeRF(opt)
else:
    model = LGM(opt)

# resume pretrained checkpoint
if opt.resume is not None:
    if opt.resume.endswith('safetensors'):
        ckpt = load_file(opt.resume, device='cpu')
    else: #ckpt
        ckpt_dict = torch.load(opt.resume, map_location='cpu')
        ckpt=ckpt_dict["model"]

    state_dict = model.state_dict()
    for k, v in ckpt.items():
        k=k.replace('module.', '')
        if k in state_dict: 
            if state_dict[k].shape == v.shape:
                state_dict[k].copy_(v)
            else:
                print(f'[WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.')
        else:
            print(f'[WARN] unexpected param {k}: {v.shape}')
    print(f'[INFO] load resume success!')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('first device')
print(device)
model = model.half().to(device)
model.eval()

tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32).to(device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1

# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
    'ashawkey/mvdream-sd2.1-diffusers', # remote weights
    torch_dtype=torch.float16,
    trust_remote_code=True,
    # local_files_only=True,
)
pipe_text = pipe_text.to(device)

# mvdream
pipe_image = MVDreamPipeline.from_pretrained(
    "ashawkey/imagedream-ipmv-diffusers", # remote weights
    torch_dtype=torch.float16,
    trust_remote_code=True,
    # local_files_only=True,
)
pipe_image = pipe_image.to(device)


print('Loading 123plus model ...')
pipe_image_plus = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
    trust_remote_code=True,
    #local_files_only=True,
)
pipe_image_plus.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipe_image_plus.scheduler.config, timestep_spacing='trailing'
)

unet_path='./pretrained/diffusion_pytorch_model.bin' 

print('Loading custom white-background unet ...')
if os.path.exists(unet_path):
    unet_ckpt_path = unet_path
else:
    unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipe_image_plus.unet.load_state_dict(state_dict, strict=True)
pipe_image_plus = pipe_image_plus.to(device)

# load rembg
bg_remover = rembg.new_session()

# process function
@spaces.GPU
def process(condition_input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42, mv_moedl_option=None):

    # seed
    kiui.seed_everything(input_seed)

    os.makedirs(os.path.join(opt.workspace, "gradio"), exist_ok=True)
    output_video_path = os.path.join(opt.workspace,"gradio", GRADIO_VIDEO_PATH)
    output_obj_rgb_path = os.path.join(opt.workspace,"gradio", GRADIO_OBJ_PATH)
    output_obj_albedo_path = os.path.join(opt.workspace,"gradio", GRADIO_OBJ_ALBEDO_PATH)
    output_obj_shading_path = os.path.join(opt.workspace,"gradio", GRADIO_OBJ_SHADING_PATH)
    
    # text-conditioned
    if condition_input_image is None:
        mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
        mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
        # bg removal
        mv_image = []
        for i in range(4):
            image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
            # to white bg
            image = image.astype(np.float32) / 255
            image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
            image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
            mv_image.append(image)
            
        mv_image_grid = np.concatenate([mv_image[1], mv_image[2],mv_image[3], mv_image[0]],axis=1)
        input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0)
        
        processed_image=None
    # image-conditioned (may also input text, but no text usually works too)
    else:
        condition_input_image = np.array(condition_input_image) # uint8
        # bg removal
        carved_image = rembg.remove(condition_input_image, session=bg_remover) # [H, W, 4]
        mask = carved_image[..., -1] > 0
        image = recenter(carved_image, mask, border_ratio=0.2)
        image = image.astype(np.float32) / 255.0
        processed_image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
        
        if mv_moedl_option=='mvdream':
            mv_image = pipe_image(prompt, processed_image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0,  elevation=input_elevation)
        
            mv_image_grid = np.concatenate([mv_image[1], mv_image[2],mv_image[3], mv_image[0]],axis=1)
            input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0)
        else:
            from PIL import Image
            from einops import rearrange, repeat
            
            # input_image=input_image* 255
            processed_image = Image.fromarray((processed_image * 255).astype(np.uint8))
            mv_image = pipe_image_plus(processed_image, num_inference_steps=input_num_steps).images[0]
            mv_image = np.asarray(mv_image, dtype=np.float32) / 255.0
            mv_image = torch.from_numpy(mv_image).permute(2, 0, 1).contiguous().float()     # (3, 960, 640)
            mv_image_grid = rearrange(mv_image, 'c (n h) (m w) -> (m h) (n w) c', n=3, m=2).numpy()
            mv_image = rearrange(mv_image, 'c (n h) (m w) -> (n m) h w c', n=3, m=2).numpy()
            input_image = mv_image
               
    # generate gaussians
     # [4, 256, 256, 3], float32
    input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
    input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)

    images_input_vit = F.interpolate(input_image, size=(224, 224), mode='bilinear', align_corners=False)
    
    data = {}
    input_image = input_image.unsqueeze(0) # [1, 4, 9, H, W]
    images_input_vit=images_input_vit.unsqueeze(0)
    data['input_vit']=images_input_vit
    
    elevation = 0
    cam_poses =[]
    if mv_moedl_option=='mvdream' or condition_input_image is None:
            azimuth = np.arange(0, 360, 90, dtype=np.int32)
            for azi in tqdm.tqdm(azimuth):
                cam_pose = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
                cam_poses.append(cam_pose)
    else:
        azimuth = np.arange(30, 360, 60, dtype=np.int32)
        cnt = 0
        for azi in tqdm.tqdm(azimuth):
            if (cnt+1) % 2!= 0:
                elevation=-20
            else:
                elevation=30
            cam_pose = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
            cam_poses.append(cam_pose)
            cnt=cnt+1
            
    cam_poses = torch.cat(cam_poses,0)
    radius = torch.norm(cam_poses[0, :3, 3])
    cam_poses[:, :3, 3] *= opt.cam_radius / radius
    transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32).to(device) @ torch.inverse(cam_poses[0])
    cam_poses = transform.unsqueeze(0) @ cam_poses 
    
    cam_poses=cam_poses.unsqueeze(0)
    data['source_camera']=cam_poses
    
    with torch.no_grad():
        if opt.volume_mode == 'TRF_Mesh':
            with torch.autocast(device_type='cuda', dtype=torch.float32):
                svd_volume = model.forward_svd_volume(input_image,data)
        else:
            with torch.autocast(device_type='cuda', dtype=torch.float16):
                svd_volume = model.forward_svd_volume(input_image,data)
        
        #time-consuming
        export_texmap=False
        
        mesh_out = model.extract_mesh(svd_volume,use_texture_map=export_texmap)
        
        if export_texmap:
            vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
            
            for i in range(len(tex_map)):
                mesh_path=os.path.join(opt.workspace, name + str(i) + '_'+ str(seed)+ '.obj')
                save_obj_with_mtl(
                    vertices.data.cpu().numpy(),
                    uvs.data.cpu().numpy(),
                    faces.data.cpu().numpy(),
                    mesh_tex_idx.data.cpu().numpy(),
                    tex_map[i].permute(1, 2, 0).data.cpu().numpy(),
                    mesh_path,
                )
        else:
            vertices, faces, vertex_colors = mesh_out

            save_obj(vertices, faces, vertex_colors[0], output_obj_rgb_path)
            save_obj(vertices, faces, vertex_colors[1], output_obj_albedo_path)
            save_obj(vertices, faces, vertex_colors[2], output_obj_shading_path)
        

    return mv_image_grid, processed_image, output_obj_rgb_path, output_obj_albedo_path, output_obj_shading_path

# gradio UI

_TITLE = '''LDM: Large Tensorial SDF Model for Textured Mesh Generation'''

_DESCRIPTION = '''





* Input can be text prompt, image. 

* If you find the output unsatisfying, try using different seeds!

'''

block = gr.Blocks(title=_TITLE).queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown('# ' + _TITLE)
    gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Column(scale=1):
            with gr.Tab("Image-to-3D"):
                # input image
                with gr.Row():
                    condition_input_image = gr.Image(
                        label="Input Image", 
                        image_mode="RGBA", 
                        type="pil"
                    )
                    
                    processed_image = gr.Image(
                        label="Processed Image", 
                        image_mode="RGBA", 
                        type="pil", 
                        interactive=False
                    )
                
                
                with gr.Row():
                        mv_moedl_option = gr.Radio([
                                "zero123plus",
                                "mvdream"
                            ], value="zero123plus",
                            label="Multi-view Diffusion")
                        
                with gr.Row(variant="panel"):
                    gr.Examples(
                        examples=[
                            os.path.join("example", img_name) for img_name in sorted(os.listdir("example"))
                        ],
                        inputs=[condition_input_image],
                        fn=lambda x: process(condition_input_image=x, prompt=''),
                        cache_examples=False,
                        examples_per_page=20,
                        label='Image-to-3D Examples'
                    )
                
            with gr.Tab("Text-to-3D"):  
                # input prompt
                with gr.Row():
                    input_text = gr.Textbox(label="prompt")
                # negative prompt
                with gr.Row():
                    input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')

                with gr.Row(variant="panel"):
                    gr.Examples(
                        examples=[
                            "a hamburger",
                            "a furry red fox head",
                            "a teddy bear",
                            "a motorbike",
                        ],
                        inputs=[input_text],
                        fn=lambda x: process(condition_input_image=None, prompt=x),
                        cache_examples=False,
                        label='Text-to-3D Examples'
                    )
            
            # elevation
            input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
            # inference steps
            input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
            # random seed
            input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
            # gen button
            button_gen = gr.Button("Generate")

        
        with gr.Column(scale=1):
            with gr.Row():
                # multi-view results
                mv_image_grid = gr.Image(interactive=False, show_label=False)
            with gr.Row():    
                output_obj_rgb_path = gr.Model3D(
                    label="RGB Model (OBJ Format)",
                    interactive=False,
                )
            with gr.Row():    
                output_obj_albedo_path = gr.Model3D(
                    label="Albedo Model (OBJ Format)",
                    interactive=False,
                )
            with gr.Row():
                output_obj_shading_path = gr.Model3D(
                    label="Shading Model (OBJ Format)",
                    interactive=False,
                )

            
        button_gen.click(process, inputs=[condition_input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed,mv_moedl_option], outputs=[mv_image_grid,processed_image, output_obj_rgb_path, output_obj_albedo_path, output_obj_shading_path])
    
    
block.launch(server_name="0.0.0.0", share=False)