File size: 27,870 Bytes
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f35f5
5708415
 
 
cbf7cc7
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4cf24
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a77b25
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import mcubes

import kiui
from kiui.lpips import LPIPS

from core.lrm_reconstructor import LRM_VSD_Mesh_Net
from core.options import Options
from core.tensoRF import TensorVMSplit_Mesh,TensorVMSplit_NeRF
from torchvision.transforms import v2
from core.geometry.camera.perspective_camera import PerspectiveCamera
from core.geometry.render.neural_render import NeuralRender
from core.geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
import nvdiffrast.torch as dr
from core.instant_utils.mesh_util import xatlas_uvmap

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

#tensorSDF + transformer + volume_rendering  
class LTRFM_NeRF(nn.Module):
    def __init__(

        self,

        opt: Options,

    ):
        super().__init__()

        self.opt = opt

        
        #predict svd using transformer
        self.vsd_net = LRM_VSD_Mesh_Net(
            camera_embed_dim=opt.camera_embed_dim,
            transformer_dim=opt.transformer_dim,
            transformer_layers=opt.transformer_layers,
            transformer_heads=opt.transformer_heads,
            triplane_low_res=opt.triplane_low_res,
            triplane_high_res=opt.triplane_high_res,
            triplane_dim=opt.triplane_dim,
            encoder_freeze=opt.encoder_freeze,
            encoder_type=opt.encoder_type,
            encoder_model_name=opt.encoder_model_name,
            encoder_feat_dim=opt.encoder_feat_dim,
            app_dim=opt.app_dim,
            density_dim=opt.density_dim,
            app_n_comp=opt.app_n_comp,
            density_n_comp=opt.density_n_comp,
        )
        
        aabb = torch.tensor([[-1, -1, -1], [1, 1, 1]]).cuda()
        grid_size = torch.tensor([opt.splat_size, opt.splat_size, opt.splat_size]).cuda()
        near_far =torch.tensor([opt.znear, opt.zfar]).cuda()
        
        # tensorf Renderer
        self.tensorRF = TensorVMSplit_NeRF(aabb, grid_size, density_n_comp=opt.density_n_comp,appearance_n_comp=opt.app_n_comp,app_dim=opt.app_dim,\
            density_dim=opt.density_dim,near_far=near_far, shadingMode=opt.shadingMode, pos_pe=opt.pos_pe, view_pe=opt.view_pe, fea_pe=opt.fea_pe)

        # LPIPS loss
        if self.opt.lambda_lpips > 0:
            self.lpips_loss = LPIPS(net='vgg')
            self.lpips_loss.requires_grad_(False)


    def state_dict(self, **kwargs):
        # remove lpips_loss
        state_dict = super().state_dict(**kwargs)
        for k in list(state_dict.keys()):
            if 'lpips_loss' in k:
                del state_dict[k]
        return state_dict
    
    def set_beta(self,t):
        self.tensorRF.lap_density.set_beta(t)
        

        
    # predict svd_volume
    def forward_svd_volume(self, images, data):
        # images: [B, 4, 9, H, W]
        # return: Gaussians: [B, dim_t]
        B, V, C, H, W = images.shape
        
        
        source_camera=data['source_camera']
        images_vit=data['input_vit'] # for transformer
        source_camera=source_camera.reshape(B,V,-1) # [B*V, 16]
        app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines = self.vsd_net(images_vit,source_camera) 

        
        app_planes=app_planes.view(B,3,self.opt.app_n_comp,self.opt.splat_size,self.opt.splat_size)
        app_lines=app_lines.view(B,3,self.opt.app_n_comp,self.opt.splat_size,1)
        density_planes=density_planes.view(B,3,self.opt.density_n_comp,self.opt.splat_size,self.opt.splat_size)
        density_lines=density_lines.view(B,3,self.opt.density_n_comp,self.opt.splat_size,1)

        results = {
            'app_planes': app_planes,
            'app_lines': app_lines,
            'basis_mat':basis_mat,
            'd_basis_mat':d_basis_mat,
            'density_planes':density_planes,
            'density_lines':density_lines
        }

        return results
    
    def extract_mesh(self, 

        planes: torch.Tensor, 

        mesh_resolution: int = 256, 

        mesh_threshold: int = 0.005, 

        use_texture_map: bool = False, 

        texture_resolution: int = 1024,):
        
        device = planes['app_planes'].device
        
        grid_size = mesh_resolution
        points = torch.linspace(-1, 1, steps=grid_size).half()
        
        x, y, z = torch.meshgrid(points, points, points)

        xyz_samples = torch.stack((x, y, z), dim=0).unsqueeze(0).to(device)
        xyz_samples=xyz_samples.permute(0,2,3,4,1)
        xyz_samples=xyz_samples.view(1,-1,1,3)
        

        grid_out = self.tensorRF.predict_sdf(planes,xyz_samples)
        grid_out['sigma']=grid_out['sigma'].view(grid_size,grid_size,grid_size).float()
        
        vertices, faces = mcubes.marching_cubes(
            grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), 
            mesh_threshold,
        )
        vertices = vertices / (mesh_resolution - 1) * 2 - 1

        if not use_texture_map:
            # query vertex colors
            vertices_tensor = torch.tensor(vertices, dtype=torch.float32).to(device).unsqueeze(0)
            rgb_colors = self.tensorRF.predict_color(
                planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy()
            rgb_colors = (rgb_colors * 255).astype(np.uint8)
            
            albedob_colors = self.tensorRF.predict_color(
                planes, vertices_tensor)['albedo'].squeeze(0).cpu().numpy()
            albedob_colors = (albedob_colors * 255).astype(np.uint8)
            
            shading_colors = self.tensorRF.predict_color(
                planes, vertices_tensor)['shading'].squeeze(0).cpu().numpy()
            shading_colors = (shading_colors * 255).astype(np.uint8)

            return vertices, faces, [rgb_colors,albedob_colors,shading_colors]
        
        # use x-atlas to get uv mapping for the mesh
        vertices = torch.tensor(vertices, dtype=torch.float32, device=device)
        faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device)

        ctx = dr.RasterizeCudaContext(device=device)
        uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
            ctx, vertices, faces, resolution=texture_resolution)
        tex_hard_mask = tex_hard_mask.float().cpu()

        # query the texture field to get the RGB color for texture map
        #TBD here
        query_vertices=gb_pos.view(1,texture_resolution*texture_resolution,3)
        
        vertices_colors = self.tensorRF.predict_color(
                planes, query_vertices)['rgb'].squeeze(0).cpu()
        
        vertices_colors=vertices_colors.reshape(1,texture_resolution,texture_resolution,3)
        
        background_feature = torch.zeros_like(vertices_colors)
        img_feat = torch.lerp(background_feature, vertices_colors, tex_hard_mask.half())
        texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
        #albedo
        vertices_colors_albedo = self.tensorRF.predict_color(
                planes, query_vertices)['albedo'].squeeze(0).cpu()
        
        vertices_colors_albedo=vertices_colors_albedo.reshape(1,texture_resolution,texture_resolution,3)
        
        background_feature = torch.zeros_like(vertices_colors_albedo)
        img_feat = torch.lerp(background_feature, vertices_colors_albedo, tex_hard_mask.half())
        texture_map_albedo = img_feat.permute(0, 3, 1, 2).squeeze(0)

        return vertices, faces, uvs, mesh_tex_idx, [texture_map,texture_map_albedo]

    
    def render_frame(self, data):
        # data: output of the dataloader
        # return: loss
        #self.set_beta(data['t'])
        results = {}
        loss = 0

        images = data['input_vit']
        
        # use the first view to predict gaussians
        svd_volume = self.forward_svd_volume(images,data) # [B, N, 14]

        results['svd_volume'] = svd_volume

        # always use white bg
        bg_color = torch.ones(3, dtype=torch.float32).to(device)
        
        # use the other views for rendering and supervision
        results = self.tensorRF(svd_volume, data['all_rays_o'], data['all_rays_d'],is_train=True, bg_color=bg_color, N_samples=self.opt.n_sample)
        pred_shading = results['image'] # [B, V, C, output_size, output_size]
        pred_alphas = results['alpha'] # [B, V, 1, output_size, output_size]
        pred_albedos = results['albedo'] # [B, V, C, output_size, output_size]
        
        pred_images = pred_shading*pred_albedos

        results['images_pred'] = pred_images
        results['alphas_pred'] = pred_alphas
        results['pred_albedos'] = pred_albedos
        results['pred_shading'] = pred_shading
    

        return results





#tensorSDF + transformer + SDF + Mesh
class LTRFM_Mesh(nn.Module):
    def __init__(

        self,

        opt: Options,

    ):
        super().__init__()

        self.opt = opt
        
        # attributes
        self.grid_res = 128 #grid_res
        self.grid_scale = 2.0 #grid_scale
        self.deformation_multiplier = 4.0
        
        
        self.init_flexicubes_geometry(device, self.opt)

        #predict svd using transformer
        self.vsd_net = LRM_VSD_Mesh_Net(
            camera_embed_dim=opt.camera_embed_dim,
            transformer_dim=opt.transformer_dim,
            transformer_layers=opt.transformer_layers,
            transformer_heads=opt.transformer_heads,
            triplane_low_res=opt.triplane_low_res,
            triplane_high_res=opt.triplane_high_res,
            triplane_dim=opt.triplane_dim,
            encoder_freeze=opt.encoder_freeze,
            encoder_type=opt.encoder_type,
            encoder_model_name=opt.encoder_model_name,
            encoder_feat_dim=opt.encoder_feat_dim,
            app_dim=opt.app_dim,
            density_dim=opt.density_dim,
            app_n_comp=opt.app_n_comp,
            density_n_comp=opt.density_n_comp,
        )
           
        aabb = torch.tensor([[-1, -1, -1], [1, 1, 1]]).to(device)
        grid_size = torch.tensor([opt.splat_size, opt.splat_size, opt.splat_size]).to(device)
        near_far =torch.tensor([opt.znear, opt.zfar]).to(device)
        # tensorf Renderer
        self.tensorRF = TensorVMSplit_Mesh(aabb, grid_size, density_n_comp=opt.density_n_comp,appearance_n_comp=opt.app_n_comp,app_dim=opt.app_dim,\
            density_dim=opt.density_dim, near_far=near_far, shadingMode=opt.shadingMode, pos_pe=opt.pos_pe, view_pe=opt.view_pe, fea_pe=opt.fea_pe)

        # LPIPS loss
        if self.opt.lambda_lpips > 0:
            self.lpips_loss = LPIPS(net='vgg')
            self.lpips_loss.requires_grad_(False)
            
            
        # load ckpt
        if opt.ckpt_nerf is not None:
            sd = torch.load(opt.ckpt_nerf, map_location='cpu')['model']
            #sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
            sd_fc = {}
            for k, v in sd.items():
                k=k.replace('module.', '')
                if k.startswith('vsd.renderModule.'):
                    continue
                else:
                    sd_fc[k] = v
            sd_fc = {k.replace('vsd_net.', ''): v for k, v in sd_fc.items()}
            sd_fc = {k.replace('tensorRF.', ''): v for k, v in sd_fc.items()}
            # missing `net_deformation` and `net_weight` parameters
            self.vsd_net.load_state_dict(sd_fc, strict=False)
            self.tensorRF.load_state_dict(sd_fc, strict=False)
            print(f'Loaded weights from {opt.ckpt_nerf}')


    def state_dict(self, **kwargs):
        # remove lpips_loss
        state_dict = super().state_dict(**kwargs)
        for k in list(state_dict.keys()):
            if 'lpips_loss' in k:
                del state_dict[k]
        return state_dict

        
    # predict svd_volume
    def forward_svd_volume(self, images, data):
        # images: [B, 4, 9, H, W]
        # return: Gaussians: [B, dim_t]
        B, V, C, H, W = images.shape
        
        source_camera=data['source_camera']
        images_vit=data['input_vit'] # for transformer
        source_camera=source_camera.reshape(B,V,-1) # [B*V, 16]
        app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines = self.vsd_net(images_vit,source_camera) 

        
        app_planes=app_planes.view(B,3,self.opt.app_n_comp,self.opt.splat_size,self.opt.splat_size)
        app_lines=app_lines.view(B,3,self.opt.app_n_comp,self.opt.splat_size,1)
        density_planes=density_planes.view(B,3,self.opt.density_n_comp,self.opt.splat_size,self.opt.splat_size)
        density_lines=density_lines.view(B,3,self.opt.density_n_comp,self.opt.splat_size,1)

        results = {
            'app_planes': app_planes,
            'app_lines': app_lines,
            'basis_mat':basis_mat,
            'd_basis_mat':d_basis_mat,
            'density_planes':density_planes,
            'density_lines':density_lines
        }

        return results

    
    def init_flexicubes_geometry(self, device, opt):
        camera = PerspectiveCamera(opt, device=device)
        renderer = NeuralRender(device, camera_model=camera)
        self.geometry = FlexiCubesGeometry(
            grid_res=self.grid_res, 
            scale=self.grid_scale, 
            renderer=renderer, 
            render_type='neural_render',
            device=device,
        )


    # query vsd for sdf weight and ...
    def get_sdf_deformation_prediction(self, planes):
        '''

        Predict SDF and deformation for tetrahedron vertices

        :param planes: triplane feature map for the geometry

        '''
        B = planes['app_lines'].shape[0]
        init_position = self.geometry.verts.unsqueeze(0).expand(B, -1, -1)
        

        sdf, deformation, weight = self.tensorRF.get_geometry_prediction(planes,init_position,self.geometry.indices)
        
        deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation)
        sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32)

        sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1))
        sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1)
        pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1)
        neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1)
        zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0)
        if torch.sum(zero_surface).item() > 0:
            update_sdf = torch.zeros_like(sdf[0:1])
            max_sdf = sdf.max()
            min_sdf = sdf.min()
            update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf)  # greater than zero
            update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf)  # smaller than zero
            new_sdf = torch.zeros_like(sdf)
            for i_batch in range(zero_surface.shape[0]):
                if zero_surface[i_batch]:
                    new_sdf[i_batch:i_batch + 1] += update_sdf
            update_mask = (new_sdf == 0).float()
            # Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative)
            sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1)
            sdf_reg_loss = sdf_reg_loss * zero_surface.float()
            sdf = sdf * update_mask + new_sdf * (1 - update_mask)

        final_sdf = []
        final_def = []
        for i_batch in range(zero_surface.shape[0]):
            if zero_surface[i_batch]:
                final_sdf.append(sdf[i_batch: i_batch + 1].detach())
                final_def.append(deformation[i_batch: i_batch + 1].detach())
            else:
                final_sdf.append(sdf[i_batch: i_batch + 1])
                final_def.append(deformation[i_batch: i_batch + 1])
        sdf = torch.cat(final_sdf, dim=0)
        deformation = torch.cat(final_def, dim=0)
        return sdf, deformation, sdf_reg_loss, weight
    
    def get_geometry_prediction(self, planes=None):
        '''

        Function to generate mesh with give triplanes

        :param planes: triplane features

        '''

        sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes)

        
        v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation
        tets = self.geometry.indices
        n_batch = planes['app_planes'].shape[0]
        v_list = []
        f_list = []
        flexicubes_surface_reg_list = []
        
        
        for i_batch in range(n_batch):
            verts, faces, flexicubes_surface_reg = self.geometry.get_mesh(
                v_deformed[i_batch], 
                sdf[i_batch].squeeze(dim=-1),
                with_uv=False, 
                indices=tets, 
                weight_n=weight[i_batch].squeeze(dim=-1),
                is_training=self.training,
            )
            flexicubes_surface_reg_list.append(flexicubes_surface_reg)
            v_list.append(verts)
            f_list.append(faces)
        
        flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean()
        flexicubes_weight_reg = (weight ** 2).mean()
        
        return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg)
    
    def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
        '''

        Predict Texture given triplanes

        :param planes: the triplane feature map

        :param tex_pos: Position we want to query the texture field

        :param hard_mask: 2D silhoueete of the rendered image

        '''
        B = planes['app_planes'].shape[0]
        tex_pos = torch.cat(tex_pos, dim=0)
        if not hard_mask is None:
            tex_pos = tex_pos * hard_mask.float()
        batch_size = tex_pos.shape[0]
        tex_pos = tex_pos.reshape(batch_size, -1, 3)
        ###################
        # We use mask to get the texture location (to save the memory)
        if hard_mask is not None:
            n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
            sample_tex_pose_list = []
            max_point = n_point_list.max()
            if max_point==0:  # xrg: hard mask may filter all points, and don not left any point
                max_point=max_point+1
            expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
            for i in range(tex_pos.shape[0]):
                tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
                if tex_pos_one_shape.shape[1] < max_point:
                    tex_pos_one_shape = torch.cat(
                        [tex_pos_one_shape, torch.zeros(
                            1, max_point - tex_pos_one_shape.shape[1], 3,
                            device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
                sample_tex_pose_list.append(tex_pos_one_shape)
            tex_pos = torch.cat(sample_tex_pose_list, dim=0)

        
        #return texture rgb
        tex_feat = self.tensorRF.get_texture_prediction(tex_pos,vsd_vome=planes)

        if hard_mask is not None:
            final_tex_feat = torch.zeros(
                B, hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
            expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
            for i in range(B):
                final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
            tex_feat = final_tex_feat

        return tex_feat.reshape(B, hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
    
    def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256):
        '''

        Function to render a generated mesh with nvdiffrast

        :param mesh_v: List of vertices for the mesh

        :param mesh_f: List of faces for the mesh

        :param cam_mv:  4x4 rotation matrix

        :return:

        '''
        return_value_list = []
        for i_mesh in range(len(mesh_v)):
            return_value = self.geometry.render_mesh(
                mesh_v[i_mesh],
                mesh_f[i_mesh].int(),
                cam_mv[i_mesh],
                resolution=render_size,
                hierarchical_mask=False
            )
            return_value_list.append(return_value)

        return_keys = return_value_list[0].keys()
        return_value = dict()
        for k in return_keys:
            value = [v[k] for v in return_value_list]
            return_value[k] = value

        mask = torch.cat(return_value['mask'], dim=0)
        hard_mask = torch.cat(return_value['hard_mask'], dim=0)
        tex_pos = return_value['tex_pos']
        depth = torch.cat(return_value['depth'], dim=0)
        normal = torch.cat(return_value['normal'], dim=0)
        return mask, hard_mask, tex_pos, depth, normal
    
    def forward_geometry(self, planes, render_cameras, render_size=256):
        '''

        Main function of our Generator. It first generate 3D mesh, then render it into 2D image

        with given `render_cameras`.

        :param planes: triplane features

        :param render_cameras: cameras to render generated 3D shape, a w2c matrix

        '''
        B, NV = render_cameras.shape[:2]

        # Generate 3D mesh first
        mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)

        # Render the mesh into 2D image (get 3d position of each image plane)   continue for here
        cam_mv = render_cameras
        run_n_view = cam_mv.shape[1]
        antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size)

        tex_hard_mask = hard_mask
        tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos]
        tex_hard_mask = torch.cat(
            [torch.cat(
                [tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1]
                 for i_view in range(run_n_view)], dim=2)
                for i in range(B)], dim=0)

        # Querying the texture field to predict the texture feature for each pixel on the image
        tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask)
        background_feature = torch.ones_like(tex_feat)      # white background

        # Merge them together
        img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask)

        # We should split it back to the original image shape
        img_feat = torch.cat(
            [torch.cat(
                [img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)]
                 for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0)

        img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
        
        albedo=img[:,:,3:6,:,:]
        img=img[:,:,0:3,:,:]
        
        antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV))
        depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV))        # transform negative depth to positive
        normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV))

        out = {
            'image': img,
            'albedo': albedo,
            'mask': antilias_mask,
            'depth': depth,
            'normal': normal,
            'sdf': sdf,
            'mesh_v': mesh_v,
            'mesh_f': mesh_f,
            'sdf_reg_loss': sdf_reg_loss,
        }
        return out
    
    
    def render_frame(self, data):
        # data: output of the dataloader
        # return: loss

        results = {}

        images = data['input_vit'] # [B, 4, 9, h, W], input features
        
        # use the first view to predict gaussians
        svd_volume = self.forward_svd_volume(images,data) # [B, N, 14]
        
        results['svd_volume'] = svd_volume
        
        # return the rendered images
        results = self.forward_geometry(svd_volume, data['w2c'], self.opt.infer_render_size)


        # always use white bg
        bg_color = torch.ones(3, dtype=torch.float32).to(device)
        
        
        pred_shading = results['image'] # [B, V, C, output_size, output_size]
        pred_alphas = results['mask'] # [B, V, 1, output_size, output_size]
        pred_albedos = results['albedo'] # [B, V, C, output_size, output_size]
        
        pred_images=pred_shading*pred_albedos

        results['images_pred'] = pred_images
        results['alphas_pred'] = pred_alphas
        results['pred_albedos'] = pred_albedos
        results['pred_shading'] = pred_shading

        return results

    def extract_mesh(

        self, 

        planes: torch.Tensor, 

        use_texture_map: bool = False,

        texture_resolution: int = 1024,

        **kwargs,

    ):
        '''

        Extract a 3D mesh from FlexiCubes. Only support batch_size 1.

        :param planes: triplane features

        :param use_texture_map: use texture map or vertex color

        :param texture_resolution: the resolution of texure map

        '''
        assert planes['app_planes'].shape[0] == 1
        device = planes['app_planes'].device
        

        # predict geometry first
        mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
        vertices, faces = mesh_v[0], mesh_f[0]

        if not use_texture_map:
            # query vertex colors
            vertices_tensor = vertices.unsqueeze(0)
            rgb_colors = self.tensorRF.predict_color(planes, vertices_tensor)['rgb'].clamp(0, 1).squeeze(0).cpu().numpy()
            rgb_colors = (rgb_colors * 255).astype(np.uint8)
            
            albedob_colors = self.tensorRF.predict_color(planes, vertices_tensor)['albedo'].clamp(0, 1).squeeze(0).cpu().numpy()
            albedob_colors = (albedob_colors * 255).astype(np.uint8)
            
            shading_colors = self.tensorRF.predict_color(planes, vertices_tensor)['shading'].clamp(0, 1).squeeze(0).cpu().numpy()
            shading_colors = (shading_colors * 255).astype(np.uint8)
            

            return vertices.cpu().numpy(), faces.cpu().numpy(), [rgb_colors,albedob_colors,shading_colors]

        # use x-atlas to get uv mapping for the mesh
        ctx = dr.RasterizeCudaContext(device=device)
        uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
            self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution)
        
        tex_hard_mask = tex_hard_mask.float().cpu()

        # query the texture field to get the RGB color for texture map
        #TBD here
        query_vertices=gb_pos.view(1,texture_resolution*texture_resolution,3)
        
        vertices_colors = self.tensorRF.predict_color(
                planes, query_vertices)['rgb'].squeeze(0).cpu()
        
        vertices_colors=vertices_colors.reshape(1,texture_resolution,texture_resolution,3)
        
        background_feature = torch.zeros_like(vertices_colors)
        img_feat = torch.lerp(background_feature, vertices_colors, tex_hard_mask)
        texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)

        return vertices, faces, uvs, mesh_tex_idx, texture_map