File size: 1,759 Bytes
915f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
from torch.optim.lr_scheduler import LRScheduler
from accelerate.logging import get_logger


logger = get_logger(__name__)


class CosineWarmupScheduler(LRScheduler):
    def __init__(self, optimizer, warmup_iters: int, max_iters: int, initial_lr: float = 1e-10, last_iter: int = -1):
        self.warmup_iters = warmup_iters
        self.max_iters = max_iters
        self.initial_lr = initial_lr
        super().__init__(optimizer, last_iter)

    def get_lr(self):
        logger.debug(f"step count: {self._step_count} | warmup iters: {self.warmup_iters} | max iters: {self.max_iters}")
        if self._step_count <= self.warmup_iters:
            return [
                self.initial_lr + (base_lr - self.initial_lr) * self._step_count / self.warmup_iters
                for base_lr in self.base_lrs]
        else:
            cos_iter = self._step_count - self.warmup_iters
            cos_max_iter = self.max_iters - self.warmup_iters
            cos_theta = cos_iter / cos_max_iter * math.pi
            cos_lr = [base_lr * (1 + math.cos(cos_theta)) / 2 for base_lr in self.base_lrs]
            return cos_lr