File size: 5,011 Bytes
915f69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
import torch.nn as nn
#from accelerate.logging import get_logger
#logger = get_logger(__name__)
class TransformerDecoder(nn.Module):
"""
Transformer blocks that process the input and optionally use condition and modulation.
"""
def __init__(self, block_type: str,
num_layers: int, num_heads: int,
inner_dim: int, cond_dim: int = None, mod_dim: int = None,
eps: float = 1e-6):
super().__init__()
self.block_type = block_type
self.layers = nn.ModuleList([
self._block_fn(inner_dim, cond_dim, mod_dim)(
num_heads=num_heads,
eps=eps,
)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(inner_dim, eps=eps)
@property
def block_type(self):
return self._block_type
@block_type.setter
def block_type(self, block_type):
assert block_type in ['basic', 'cond', 'mod', 'cond_mod'], \
f"Unsupported block type: {block_type}"
self._block_type = block_type
def _block_fn(self, inner_dim, cond_dim, mod_dim):
assert inner_dim is not None, f"inner_dim must always be specified"
if self.block_type == 'basic':
assert cond_dim is None and mod_dim is None, \
f"Condition and modulation are not supported for BasicBlock"
from .block import BasicBlock
#logger.debug(f"Using BasicBlock")
return partial(BasicBlock, inner_dim=inner_dim)
elif self.block_type == 'cond':
assert cond_dim is not None, f"Condition dimension must be specified for ConditionBlock"
assert mod_dim is None, f"Modulation dimension is not supported for ConditionBlock"
from .block import ConditionBlock
#logger.debug(f"Using ConditionBlock")
return partial(ConditionBlock, inner_dim=inner_dim, cond_dim=cond_dim)
elif self.block_type == 'mod':
#logger.error(f"modulation without condition is not implemented")
raise NotImplementedError(f"modulation without condition is not implemented")
elif self.block_type == 'cond_mod':
assert cond_dim is not None and mod_dim is not None, \
f"Condition and modulation dimensions must be specified for ConditionModulationBlock"
from .block import ConditionModulationBlock
#logger.debug(f"Using ConditionModulationBlock")
return partial(ConditionModulationBlock, inner_dim=inner_dim, cond_dim=cond_dim, mod_dim=mod_dim)
else:
raise ValueError(f"Unsupported block type during runtime: {self.block_type}")
def assert_runtime_integrity(self, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor):
assert x is not None, f"Input tensor must be specified"
if self.block_type == 'basic':
assert cond is None and mod is None, \
f"Condition and modulation are not supported for BasicBlock"
elif self.block_type == 'cond':
assert cond is not None and mod is None, \
f"Condition must be specified and modulation is not supported for ConditionBlock"
elif self.block_type == 'mod':
raise NotImplementedError(f"modulation without condition is not implemented")
else:
assert cond is not None and mod is not None, \
f"Condition and modulation must be specified for ConditionModulationBlock"
def forward_layer(self, layer: nn.Module, x: torch.Tensor, cond: torch.Tensor, mod: torch.Tensor):
if self.block_type == 'basic':
return layer(x)
elif self.block_type == 'cond':
return layer(x, cond)
elif self.block_type == 'mod':
return layer(x, mod)
else:
return layer(x, cond, mod)
def forward(self, x: torch.Tensor, cond: torch.Tensor = None, mod: torch.Tensor = None):
# x: [N, L, D]
# cond: [N, L_cond, D_cond] or None
# mod: [N, D_mod] or None
self.assert_runtime_integrity(x, cond, mod)
for layer in self.layers:
x = self.forward_layer(layer, x, cond, mod)
x = self.norm(x)
return x
|