|
import torch
|
|
import torch.nn.functional as F
|
|
import inspect
|
|
import numpy as np
|
|
from typing import Callable, List, Optional, Union
|
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
|
from diffusers import AutoencoderKL, DiffusionPipeline
|
|
from diffusers.utils import (
|
|
deprecate,
|
|
is_accelerate_available,
|
|
is_accelerate_version,
|
|
logging,
|
|
)
|
|
from diffusers.configuration_utils import FrozenDict
|
|
from diffusers.schedulers import DDIMScheduler
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from mvdream.mv_unet import MultiViewUNetModel, get_camera
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class MVDreamPipeline(DiffusionPipeline):
|
|
|
|
_optional_components = ["feature_extractor", "image_encoder"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
unet: MultiViewUNetModel,
|
|
tokenizer: CLIPTokenizer,
|
|
text_encoder: CLIPTextModel,
|
|
scheduler: DDIMScheduler,
|
|
|
|
feature_extractor: CLIPImageProcessor,
|
|
image_encoder: CLIPVisionModel,
|
|
requires_safety_checker: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate(
|
|
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
|
|
)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
|
)
|
|
deprecate(
|
|
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
|
|
)
|
|
new_config = dict(scheduler.config)
|
|
new_config["clip_sample"] = False
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
feature_extractor=feature_extractor,
|
|
image_encoder=image_encoder,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding.
|
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
|
steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding.
|
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
|
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0):
|
|
r"""
|
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
|
`enable_model_cpu_offload`, but performance is lower.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
|
from accelerate import cpu_offload
|
|
else:
|
|
raise ImportError(
|
|
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
|
|
)
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache()
|
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0):
|
|
r"""
|
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
|
from accelerate import cpu_offload_with_hook
|
|
else:
|
|
raise ImportError(
|
|
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
|
|
)
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache()
|
|
|
|
hook = None
|
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
|
_, hook = cpu_offload_with_hook(
|
|
cpu_offloaded_model, device, prev_module_hook=hook
|
|
)
|
|
|
|
|
|
self.final_offload_hook = hook
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
r"""
|
|
Returns the device on which the pipeline's models will be executed. After calling
|
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
|
hooks.
|
|
"""
|
|
if not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance: bool,
|
|
negative_prompt=None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
raise ValueError(
|
|
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
|
|
)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if (
|
|
hasattr(self.text_encoder.config, "use_attention_mask")
|
|
and self.text_encoder.config.use_attention_mask
|
|
):
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(
|
|
bs_embed * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if (
|
|
hasattr(self.text_encoder.config, "use_attention_mask")
|
|
and self.text_encoder.config.use_attention_mask
|
|
):
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(
|
|
dtype=self.text_encoder.dtype, device=device
|
|
)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
|
1, num_images_per_prompt, 1
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(
|
|
batch_size * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
return prompt_embeds
|
|
|
|
def decode_latents(self, latents):
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(
|
|
shape, generator=generator, device=device, dtype=dtype
|
|
)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if image.dtype == np.float32:
|
|
image = (image * 255).astype(np.uint8)
|
|
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
|
|
return torch.zeros_like(image_embeds), image_embeds
|
|
|
|
def encode_image_latents(self, image, device, num_images_per_prompt):
|
|
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device)
|
|
image = 2 * image - 1
|
|
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
|
|
image = image.to(dtype=dtype)
|
|
|
|
posterior = self.vae.encode(image).latent_dist
|
|
latents = posterior.sample() * self.vae.config.scaling_factor
|
|
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
|
|
|
return torch.zeros_like(latents), latents
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: str = "",
|
|
image: Optional[np.ndarray] = None,
|
|
height: int = 256,
|
|
width: int = 256,
|
|
elevation: float = 0,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.0,
|
|
negative_prompt: str = "",
|
|
num_images_per_prompt: int = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
output_type: Optional[str] = "numpy",
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
num_frames: int = 4,
|
|
device=torch.device("cuda:0"),
|
|
):
|
|
self.unet = self.unet.to(device=device)
|
|
self.vae = self.vae.to(device=device)
|
|
self.text_encoder = self.text_encoder.to(device=device)
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
|
|
if image is not None:
|
|
assert isinstance(image, np.ndarray) and image.dtype == np.float32
|
|
self.image_encoder = self.image_encoder.to(device=device)
|
|
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
|
|
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
|
|
|
|
_prompt_embeds = self._encode_prompt(
|
|
prompt=prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
)
|
|
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
|
|
|
|
|
|
actual_num_frames = num_frames if image is None else num_frames + 1
|
|
latents: torch.Tensor = self.prepare_latents(
|
|
actual_num_frames * num_images_per_prompt,
|
|
4,
|
|
height,
|
|
width,
|
|
prompt_embeds_pos.dtype,
|
|
device,
|
|
generator,
|
|
None,
|
|
)
|
|
|
|
if image is not None:
|
|
camera = get_camera(num_frames, elevation=elevation, extra_view=True).to(dtype=latents.dtype, device=device)
|
|
else:
|
|
camera = get_camera(num_frames, elevation=elevation, extra_view=False).to(dtype=latents.dtype, device=device)
|
|
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
|
|
multiplier = 2 if do_classifier_free_guidance else 1
|
|
latent_model_input = torch.cat([latents] * multiplier)
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
unet_inputs = {
|
|
'x': latent_model_input,
|
|
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
|
|
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
|
|
'num_frames': actual_num_frames,
|
|
'camera': torch.cat([camera] * multiplier),
|
|
}
|
|
|
|
if image is not None:
|
|
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
|
|
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos])
|
|
|
|
|
|
noise_pred = self.unet.forward(**unet_inputs)
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
|
|
latents: torch.Tensor = self.scheduler.step(
|
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
|
)[0]
|
|
|
|
|
|
if i == len(timesteps) - 1 or (
|
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
elif output_type == "pil":
|
|
image = self.decode_latents(latents)
|
|
image = self.numpy_to_pil(image)
|
|
else:
|
|
image = self.decode_latents(latents)
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
return image |