|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
from .modulate import ModLN
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
"""
|
|
Transformer block that is in its simplest form.
|
|
Designed for PF-LRM architecture.
|
|
"""
|
|
|
|
def __init__(self, inner_dim: int, num_heads: int, eps: float,
|
|
attn_drop: float = 0., attn_bias: bool = False,
|
|
mlp_ratio: float = 4., mlp_drop: float = 0.):
|
|
super().__init__()
|
|
self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
|
|
self.self_attn = nn.MultiheadAttention(
|
|
embed_dim=inner_dim, num_heads=num_heads,
|
|
dropout=attn_drop, bias=attn_bias, batch_first=True)
|
|
self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
|
|
nn.GELU(),
|
|
nn.Dropout(mlp_drop),
|
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
|
|
nn.Dropout(mlp_drop),
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
before_sa = self.norm1(x)
|
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
|
|
x = x + self.mlp(self.norm2(x))
|
|
return x
|
|
|
|
|
|
class ConditionBlock(nn.Module):
|
|
"""
|
|
Transformer block that takes in a cross-attention condition.
|
|
Designed for SparseLRM architecture.
|
|
"""
|
|
|
|
def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float,
|
|
attn_drop: float = 0., attn_bias: bool = False,
|
|
mlp_ratio: float = 4., mlp_drop: float = 0.):
|
|
super().__init__()
|
|
self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
|
|
self.cross_attn = nn.MultiheadAttention(
|
|
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
|
|
dropout=attn_drop, bias=attn_bias, batch_first=True)
|
|
self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
|
|
self.self_attn = nn.MultiheadAttention(
|
|
embed_dim=inner_dim, num_heads=num_heads,
|
|
dropout=attn_drop, bias=attn_bias, batch_first=True)
|
|
self.norm3 = nn.LayerNorm(inner_dim, eps=eps)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
|
|
nn.GELU(),
|
|
nn.Dropout(mlp_drop),
|
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
|
|
nn.Dropout(mlp_drop),
|
|
)
|
|
|
|
def forward(self, x, cond):
|
|
|
|
|
|
x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0]
|
|
before_sa = self.norm2(x)
|
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
|
|
x = x + self.mlp(self.norm3(x))
|
|
return x
|
|
|
|
|
|
class ConditionModulationBlock(nn.Module):
|
|
"""
|
|
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks.
|
|
Designed for raw LRM architecture.
|
|
"""
|
|
|
|
def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float,
|
|
attn_drop: float = 0., attn_bias: bool = False,
|
|
mlp_ratio: float = 4., mlp_drop: float = 0.):
|
|
super().__init__()
|
|
self.norm1 = ModLN(inner_dim, mod_dim, eps)
|
|
self.cross_attn = nn.MultiheadAttention(
|
|
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
|
|
dropout=attn_drop, bias=attn_bias, batch_first=True)
|
|
self.norm2 = ModLN(inner_dim, mod_dim, eps)
|
|
self.self_attn = nn.MultiheadAttention(
|
|
embed_dim=inner_dim, num_heads=num_heads,
|
|
dropout=attn_drop, bias=attn_bias, batch_first=True)
|
|
self.norm3 = ModLN(inner_dim, mod_dim, eps)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
|
|
nn.GELU(),
|
|
nn.Dropout(mlp_drop),
|
|
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
|
|
nn.Dropout(mlp_drop),
|
|
)
|
|
|
|
def forward(self, x, cond, mod):
|
|
|
|
|
|
|
|
x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0]
|
|
before_sa = self.norm2(x, mod)
|
|
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
|
|
x = x + self.mlp(self.norm3(x, mod))
|
|
return x
|
|
|