LDM / core /lrm_reconstructor.py
xrg
first commit
915f69b
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from typing import Tuple, Literal
from functools import partial
import itertools
# LRM
from .embedder import CameraEmbedder
from .transformer import TransformerDecoder
# from accelerate.logging import get_logger
# logger = get_logger(__name__)
class LRM_VSD_Mesh_Net(nn.Module):
"""
predict VSD using transformer
"""
def __init__(self, camera_embed_dim: int,
transformer_dim: int, transformer_layers: int, transformer_heads: int,
triplane_low_res: int, triplane_high_res: int, triplane_dim: int,
encoder_freeze: bool = True, encoder_type: str = 'dino',
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768, app_dim = 27, density_dim = 8, app_n_comp=24,
density_n_comp=8):
super().__init__()
# attributes
self.encoder_feat_dim = encoder_feat_dim
self.camera_embed_dim = camera_embed_dim
self.triplane_low_res = triplane_low_res
self.triplane_high_res = triplane_high_res
self.triplane_dim = triplane_dim
self.transformer_dim=transformer_dim
# modules
self.encoder = self._encoder_fn(encoder_type)(
model_name=encoder_model_name,
modulation_dim=self.camera_embed_dim, #mod camera vector
freeze=encoder_freeze,
)
self.camera_embedder = CameraEmbedder(
raw_dim=12+4, embed_dim=camera_embed_dim,
)
self.n_comp=app_n_comp+density_n_comp
self.app_dim=app_dim
self.density_dim=density_dim
self.app_n_comp=app_n_comp
self.density_n_comp=density_n_comp
self.pos_embed = nn.Parameter(torch.randn(1, 3*(triplane_low_res**2)+3*triplane_low_res, transformer_dim) * (1. / transformer_dim) ** 0.5)
self.transformer = TransformerDecoder(
block_type='cond',
num_layers=transformer_layers, num_heads=transformer_heads,
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=None,
)
# for plane
self.upsampler = nn.ConvTranspose2d(transformer_dim, self.n_comp, kernel_size=2, stride=2, padding=0)
self.dim_map = nn.Linear(transformer_dim,self.n_comp)
self.up_line = nn.Linear(triplane_low_res,triplane_low_res*2)
@staticmethod
def _encoder_fn(encoder_type: str):
encoder_type = encoder_type.lower()
assert encoder_type in ['dino', 'dinov2'], "Unsupported encoder type"
if encoder_type == 'dino':
from .encoders.dino_wrapper import DinoWrapper
#logger.info("Using DINO as the encoder")
return DinoWrapper
elif encoder_type == 'dinov2':
from .encoders.dinov2_wrapper import Dinov2Wrapper
#logger.info("Using DINOv2 as the encoder")
return Dinov2Wrapper
def forward_transformer(self, image_feats, camera_embeddings=None):
N = image_feats.shape[0]
x = self.pos_embed.repeat(N, 1, 1) # [N, L, D]
x = self.transformer(
x,
cond=image_feats,
mod=camera_embeddings,
)
return x
def reshape_upsample(self, tokens):
#B,_,3*ncomp
N = tokens.shape[0]
H = W = self.triplane_low_res
P=self.n_comp
offset=3*H*W
# planes
plane_tokens= tokens[:,:3*H*W,:].view(N,H,W,3,self.transformer_dim)
plane_tokens = torch.einsum('nhwip->inphw', plane_tokens) # [3, N, P, H, W]
plane_tokens = plane_tokens.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W]
plane_tokens = self.upsampler(plane_tokens) # [3*N, P, H', W']
plane_tokens = plane_tokens.view(3, N, *plane_tokens.shape[-3:]) # [3, N, P, H', W']
plane_tokens = torch.einsum('inphw->niphw', plane_tokens) # [N, 3, P, H', W']
plane_tokens = plane_tokens.reshape(N, 3*P, *plane_tokens.shape[-2:]) # # [N, 3*P, H', W']
plane_tokens = plane_tokens.contiguous()
#lines
line_tokens= tokens[:,3*H*W:3*H*W+3*H,:].view(N,H,3,self.transformer_dim)
line_tokens= self.dim_map(line_tokens)
line_tokens = torch.einsum('nhip->npih', line_tokens) # [ N, P, 3, H]
line_tokens=self.up_line(line_tokens)
line_tokens = torch.einsum('npih->niph', line_tokens) # [ N, 3, P, H]
line_tokens=line_tokens.reshape(N,3*P,line_tokens.shape[-1],1)
line_tokens = line_tokens.contiguous()
mat_tokens=None
d_mat_tokens=None
return plane_tokens[:,:self.app_n_comp*3,:,:],line_tokens[:,:self.app_n_comp*3,:,:],mat_tokens,d_mat_tokens,plane_tokens[:,self.app_n_comp*3:,:,:],line_tokens[:,self.app_n_comp*3:,:,:]
def forward_planes(self, image, camera):
# image: [N, V, C_img, H_img, W_img]
# camera: [N,V, D_cam_raw]
N,V,_,H,W = image.shape
image=image.reshape(N*V,3,H,W)
camera=camera.reshape(N*V,-1)
# embed camera
camera_embeddings = self.camera_embedder(camera)
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
# encode image
image_feats = self.encoder(image, camera_embeddings)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
image_feats=image_feats.reshape(N,V*image_feats.shape[-2],image_feats.shape[-1])
# transformer generating planes
tokens = self.forward_transformer(image_feats)
app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines = self.reshape_upsample(tokens)
return app_planes,app_lines,basis_mat,d_basis_mat,density_planes,density_lines
def forward(self, image,source_camera):
# image: [N,V, C_img, H_img, W_img]
# source_camera: [N, V, D_cam_raw]
assert image.shape[0] == source_camera.shape[0], "Batch size mismatch for image and source_camera"
planes = self.forward_planes(image, source_camera)
#B,3,dim,H,W
return planes