LDM / core /provider_gobjaverse_crop.py
xrg
first commit
915f69b
import os
import cv2
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset
from PIL import Image
import json
from torchvision.transforms import v2
import tarfile
import kiui
from core.options import Options
from core.utils import get_rays, grid_distortion, orbit_camera_jitter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
class GobjaverseDataset(Dataset):
def _warn(self):
raise NotImplementedError('this dataset is just an example and cannot be used directly, you should modify it to your own setting! (search keyword TODO)')
def __init__(self, opt: Options, training=True):
self.total_epoch = 30
self.cur_epoch = 0
self.cur_itrs = 0
# 不切片的比例,原始尺寸可以保持稳定训练
self.original_scale = 0.1
self.bata_line_scale = self.original_scale * 0.5
self.beta_line_ites = 3000
self.opt = opt
self.training = training
if opt.over_fit:
data_list_path=opt.data_debug_list
else:
data_list_path=opt.data_list_path
# TODO: load the list of objects for training
self.items = []
with open(data_list_path, 'r') as f:
data = json.load(f)
for item in data:
self.items.append(item)
# naive split
if not opt.over_fit:
if self.training:
self.items = self.items[:-self.opt.batch_size]
else:
self.items = self.items[-self.opt.batch_size:]
else:
self.opt.batch_size=len(self.items)
self.opt.num_workers=0
# default camera intrinsics
self.tan_half_fov = np.tan(0.5 * np.deg2rad(self.opt.fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (self.opt.zfar + self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[3, 2] = - (self.opt.zfar * self.opt.znear) / (self.opt.zfar - self.opt.znear)
self.proj_matrix[2, 3] = 1
def __len__(self):
return len(self.items)
def get_random_crop(self, batch_masks, minsize):
n, h, w = batch_masks.shape
# 初始化一个全为-1的张量,用于存储随机裁剪区域的左上角坐标
crop_topleft_points = torch.full((n, 4), -1, dtype=torch.int)
for i, mask in enumerate(batch_masks):
# 获取非零坐标
nonzero_coords = torch.nonzero(mask, as_tuple=False)
if nonzero_coords.size(0) == 0:
crop_topleft_points[i] = torch.tensor([0, 0, minsize, minsize])
continue # 如果没有非零元素,保留初始化时的-1值
# 计算最小和最大坐标
min_coords = torch.min(nonzero_coords, dim=0)[0]
max_coords = torch.max(nonzero_coords, dim=0)[0]
y_min, x_min = min_coords
y_max, x_max = max_coords
# 确保包围盒不小于 minsize * minsize
y_center = (y_min + y_max) // 2
x_center = (x_min + x_max) // 2
y_min = max(0, y_center - (minsize // 2))
y_max = min(h - 1, y_center + (minsize // 2))
x_min = max(0, x_center - (minsize // 2))
x_max = min(w - 1, x_center + (minsize // 2))
# 如果计算后仍然小于 minsize,则调整
if (y_max - y_min + 1) < minsize:
y_min = max(0, y_max - minsize + 1)
y_max = y_min + minsize - 1
if (x_max - x_min + 1) < minsize:
x_min = max(0, x_max - minsize + 1)
x_max = x_min + minsize - 1
# 随机选择左上角点
top_y = torch.randint(y_min, y_max - minsize + 2, (1,)).item() # 确保裁剪区域在包围盒内
top_x = torch.randint(x_min, x_max - minsize + 2, (1,)).item()
crop_topleft_points[i] = torch.tensor([top_x, top_y, minsize, minsize])
return crop_topleft_points
def __getitem__(self, idx):
uid = self.items[idx]
results = {}
# load num_views images
images = []
albedos = []
normals = []
depths = []
masks = []
cam_poses = []
vid_cnt = 0
# TODO: choose views, based on your rendering settings
if self.training:
if self.opt.is_fix_views:
if self.opt.mvdream_or_zero123:
vids = [0,30,12,36,27,6,33,18][:self.opt.num_input_views] + np.random.permutation(24).tolist()
else:
vids = [0,29,8,33,16,37,2,10,18,28][:self.opt.num_input_views] + np.random.permutation(24).tolist()
else:
vids = np.random.permutation(np.arange(0, 36))[:self.opt.num_input_views].tolist() + np.random.permutation(36).tolist()
else:
#fixed views
# if self.opt.mvdream_or_zero123:
# vids = np.arange(0, 40, 6).tolist() + np.arange(100).tolist()
# else:
# vids = np.arange(0, 40, 4).tolist() + np.arange(100).tolist()
if self.opt.mvdream_or_zero123:
vids = [0,30,12,36,27,6,33,18]#np.arange(0, 24, 6).tolist() + np.arange(27, 40, 3).tolist()
else:
vids = [0,29,8,33,16,37,2,10,18,28]
for vid in vids:
#try:
uid_last = uid.split('/')[1]
if self.opt.rar_data:
tar_path = os.path.join(self.opt.data_path, f"{uid}.tar")
image_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.png")
meta_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}.json")
albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg...
# mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png")
nd_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_nd.exr")
with tarfile.open(tar_path, 'r') as tar:
with tar.extractfile(image_path) as f:
image = np.frombuffer(f.read(), np.uint8)
with tar.extractfile(albedo_path) as f:
albedo = np.frombuffer(f.read(), np.uint8)
with tar.extractfile(meta_path) as f:
meta = json.loads(f.read().decode())
with tar.extractfile(nd_path) as f:
nd = np.frombuffer(f.read(), np.uint8)
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
else:
image_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.png")
meta_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}.json")
# albedo_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_albedo.png") # black bg...
# mr_path = os.path.join(uid_last, 'campos_512_v4', f"{vid:05d}/{vid:05d}_mr.png")
nd_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_nd.exr")
albedo_path = os.path.join(self.opt.data_path,uid, f"{vid:05d}/{vid:05d}_albedo.png")
# 读取图片并转换为np.uint8类型的数组
with open(image_path, 'rb') as f:
image = np.frombuffer(f.read(), dtype=np.uint8)
with open(albedo_path, 'rb') as f:
albedo = np.frombuffer(f.read(), dtype=np.uint8)
# 读取JSON文件作为元数据
with open(meta_path, 'r') as f:
meta = json.load(f)
# 读取图片并转换为np.uint8类型的数组
with open(nd_path, 'rb') as f:
nd = np.frombuffer(f.read(), np.uint8)
image = torch.from_numpy(cv2.imdecode(image, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255) # [512, 512, 4] in [0, 1]
albedo = torch.from_numpy(cv2.imdecode(albedo, cv2.IMREAD_UNCHANGED).astype(np.float32) / 255)
c2w = np.eye(4)
c2w[:3, 0] = np.array(meta['x'])
c2w[:3, 1] = np.array(meta['y'])
c2w[:3, 2] = np.array(meta['z'])
c2w[:3, 3] = np.array(meta['origin'])
c2w = torch.tensor(c2w, dtype=torch.float32).reshape(4, 4)
nd = cv2.imdecode(nd, cv2.IMREAD_UNCHANGED).astype(np.float32) # [512, 512, 4] in [-1, 1]
normal = nd[..., :3] # in [-1, 1], bg is [0, 0, 1]
depth = nd[..., 3] # in [0, +?), bg is 0
# rectify normal directions
normal = normal[..., ::-1]
normal[..., 0] *= -1
normal = torch.from_numpy(normal.astype(np.float32)).nan_to_num_(0) # there are nans in gt normal...
depth = torch.from_numpy(depth.astype(np.float32)).nan_to_num_(0)
# except Exception as e:
# # print(f'[WARN] dataset {uid} {vid}: {e}')
# continue
# blender world + opencv cam --> opengl world & cam
c2w[1] *= -1
c2w[[1, 2]] = c2w[[2, 1]]
c2w[:3, 1:3] *= -1 # invert up and forward direction
image = image.permute(2, 0, 1) # [4, 512, 512]
mask = image[3:4] # [1, 512, 512]
image = image[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
image = image[[2,1,0]].contiguous() # bgr to rgb
# albdeo
albedo = albedo.permute(2, 0, 1) # [4, 512, 512]
albedo = albedo[:3] * mask + (1 - mask) # [3, 512, 512], to white bg
albedo = albedo[[2,1,0]].contiguous() # bgr to rgb
normal = normal.permute(2, 0, 1) # [3, 512, 512]
normal = normal * mask # to [0, 0, 0] bg
images.append(image)
albedos.append(albedo)
normals.append(normal)
depths.append(depth)
masks.append(mask.squeeze(0))
cam_poses.append(c2w)
vid_cnt += 1
if vid_cnt == self.opt.num_views:
break
if vid_cnt < self.opt.num_views:
print(f'[WARN] dataset {uid}: not enough valid views, only {vid_cnt} views found!')
n = self.opt.num_views - vid_cnt
images = images + [images[-1]] * n
normals = normals + [normals[-1]] * n
depths = depths + [depths[-1]] * n
masks = masks + [masks[-1]] * n
cam_poses = cam_poses + [cam_poses[-1]] * n
images = torch.stack(images, dim=0) # [V, 3, H, W]
albedos = torch.stack(albedos, dim=0) # [V, 3, H, W]
normals = torch.stack(normals, dim=0) # [V, 3, H, W]
depths = torch.stack(depths, dim=0) # [V, H, W]
masks = torch.stack(masks, dim=0) # [V, H, W]
cam_poses = torch.stack(cam_poses, dim=0) # [V, 4, 4]
# normalized camera feats as in paper (transform the first pose to a fixed position)
radius = torch.norm(cam_poses[0, :3, 3])
cam_poses[:, :3, 3] *= self.opt.cam_radius / radius
transform = torch.tensor([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, self.opt.cam_radius], [0, 0, 0, 1]], dtype=torch.float32) @ torch.inverse(cam_poses[0])
cam_poses = transform.unsqueeze(0) @ cam_poses # [V, 4, 4]
cam_poses_input = cam_poses[:self.opt.num_input_views].clone()
# 模拟的设定input size,原图512可以模拟输入320
images = F.interpolate(images, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False) # [V, C, H, W]
albedos = F.interpolate(albedos, size=(self.opt.input_size, self.opt.input_size), mode='bilinear', align_corners=False)
# increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size)
# max_scale_input_size = int(self.opt.output_size + increase_size)
if self.opt.is_crop and self.training:
#max_scale_input_size=self.opt.input_size
increase_size= np.maximum((self.cur_epoch/self.total_epoch-self.original_scale),0)/(1-self.original_scale) * (self.opt.input_size-self.opt.output_size)
increase_size= np.maximum(self.opt.output_size*0.5,increase_size)
max_scale_input_size = int(self.opt.output_size + increase_size)
else:
max_scale_input_size=self.opt.output_size
# random crop, 先随机一个目标尺寸,再从中裁剪一块固定尺寸作为目标
if max_scale_input_size > self.opt.output_size:
scaled_input_size = np.random.randint(self.opt.output_size, max_scale_input_size+1)
else:
scaled_input_size = self.opt.output_size
target_images = v2.functional.resize(
images, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1)
target_albedos = v2.functional.resize(
albedos, scaled_input_size, interpolation=3, antialias=True).clamp(0, 1)
# target_depths = v2.functional.resize(
# target_depths, render_size, interpolation=0, antialias=True)
target_alphas = v2.functional.resize(
masks.unsqueeze(1), scaled_input_size, interpolation=0, antialias=True)
# crop_params = v2.RandomCrop.get_params(
# target_images, output_size=(self.opt.output_size, self.opt.output_size))
# 拿 mask的包围盒,并且保证包围盒大于crop patch
crop_params = self.get_random_crop(target_alphas[:,0], self.opt.output_size )
target_images = torch.stack([v2.functional.crop(target_images[i], *crop_params[i]) for i in range(target_images.shape[0])],0)
target_albedos = torch.stack([v2.functional.crop(target_albedos[i], *crop_params[i]) for i in range(target_albedos.shape[0])],0)
target_alphas = torch.stack([v2.functional.crop(target_alphas[i], *crop_params[i]) for i in range(target_alphas.shape[0])],0)
#target gt
results['images_output']=target_images
results['albedos_output']=target_albedos
results['masks_output']=target_alphas
#bake sdf bata schedule
#results['t']=torch.tensor(self.cur_epoch/(self.opt.num_epochs*self.bata_line_scale), dtype=torch.float32).clamp(0, 1)
#results['t']=torch.tensor(self.cur_itrs/self.beta_line_ites, dtype=torch.float32).clamp(0, 1)
# data augmentation condition input image
images_input = images[:self.opt.num_input_views].clone()
if self.training:
# apply random grid distortion to simulate 3D inconsistency
if random.random() < self.opt.prob_grid_distortion:
images_input[1:] = grid_distortion(images_input[1:])
# apply camera jittering (only to input!)
if random.random() < self.opt.prob_cam_jitter:
cam_poses_input[1:] = orbit_camera_jitter(cam_poses_input[1:])
#images_input = TF.normalize(images_input, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
results['input']=images_input #input view images, unused for tranformer based
#results['input'] = None # for gs based mesh
#for transformer hard code size
images_input_vit = F.interpolate(images_input, size=(224, 224), mode='bilinear', align_corners=False)
#images_input_vit = TF.normalize(images_input_vit, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
results['input_vit']=images_input_vit
#if self.opt.volume_mode=='TRF':
all_rays_o=[]
all_rays_d=[]
for i in range(vid_cnt):
rays_o, rays_d = get_rays(cam_poses[i], scaled_input_size, scaled_input_size, self.opt.fovy) # [h, w, 3]
all_rays_o.append(rays_o)
all_rays_d.append(rays_d)
all_rays_o=torch.stack(all_rays_o, dim=0)
all_rays_d=torch.stack(all_rays_d, dim=0)
if crop_params is not None:
all_rays_o_crop=[]
all_rays_d_crop=[]
for k in range(all_rays_o.shape[0]):
i, j, h, w = crop_params[k]
all_rays_o_crop.append(all_rays_o[k][i:i+h, j:j+w, :])
all_rays_d_crop.append(all_rays_d[k][i:i+h, j:j+w, :])
all_rays_o=torch.stack(all_rays_o_crop, dim=0)
all_rays_d=torch.stack(all_rays_d_crop, dim=0)
results['all_rays_o']=all_rays_o
results['all_rays_d']=all_rays_d
# 相机外参,c2w
# opengl to colmap camera for gaussian renderer
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# c2w的逆,w2c*投影内参,等于mvp矩阵
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3] #相机位子
results['cam_view'] = cam_view
results['cam_view_proj'] = cam_view_proj
results['cam_pos'] = cam_pos
#lrm用的是内参和外参的混合,这里先直接用外参试下, 实验可行
results['source_camera']=cam_poses_input
return results