File size: 4,511 Bytes
2823934
 
 
 
 
d006030
 
2823934
 
 
d006030
c7b9640
d006030
 
c2633fb
 
 
a2a71ed
ff7f769
 
 
 
 
 
c2633fb
e2ebf4e
 
 
 
 
ff7f769
c167a04
2823934
4ac8a6d
2823934
 
 
 
 
c2633fb
2823934
c2633fb
58a0d29
 
 
 
 
 
 
2823934
 
ff7f769
2823934
 
 
 
 
 
 
58a0d29
2823934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a0d29
2823934
 
 
 
 
 
 
 
 
 
 
 
58a0d29
2823934
 
 
58a0d29
2823934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a0d29
2823934
 
 
 
 
4ac8a6d
2823934
4ac8a6d
2823934
 
e2ebf4e
 
 
2823934
58a0d29
 
ff7f769
2823934
 
e2ebf4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
import os

device = "cuda" if torch.cuda.is_available() else "cpu"

# Set your Hugging Face token
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
login(token=HUGGINGFACE_TOKEN)

# Path to your model repository and safetensors weights
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
lora_weights_path = "./pytorch_lora_weights.safetensors"

# Load the base model
pipeline = DiffusionPipeline.from_pretrained(
    base_model_repo,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_auth_token=HUGGINGFACE_TOKEN
)
pipeline.load_lora_weights(lora_weights_path)

if device == "cuda":
    pipeline.enable_sequential_cpu_offload()  # Efficient memory usage
    pipeline.enable_xformers_memory_efficient_attention()  # Enable xformers memory efficient attention

pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 768  # Reduce max image size to fit within memory constraints

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )
        
        for example in examples:
            gr.Button(example).click(lambda e=example: prompt.set_value(e))
    
    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()