Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
from huggingface_hub import login | |
import os | |
import bitsandbytes as bnb | |
import onnx | |
import onnxruntime as ort | |
from onnxruntime.quantization import quantize_dynamic, QuantType | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Set your Hugging Face token | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
login(token=HUGGINGFACE_TOKEN) | |
# Path to your model repository and safetensors weights | |
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers" | |
lora_weights_path = "./pytorch_lora_weights.safetensors" | |
# Load the base model with 8-bit precision | |
pipeline = DiffusionPipeline.from_pretrained( | |
base_model_repo, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
use_auth_token=HUGGINGFACE_TOKEN | |
) | |
bnb.optim.load_int8_model(pipeline.model, device=device) | |
pipeline.load_lora_weights(lora_weights_path) | |
pipeline.enable_sequential_cpu_offload() # Efficient memory usage | |
pipeline.enable_xformers_memory_efficient_attention() # Enable xformers memory efficient attention | |
pipeline = pipeline.to(device) | |
# Export to ONNX | |
onnx_model_path = "model.onnx" | |
pipeline.model.eval() | |
dummy_input = torch.randn(1, 3, 512, 512, device=device) | |
torch.onnx.export(pipeline.model, dummy_input, onnx_model_path, export_params=True, opset_version=11, do_constant_folding=True, input_names=['input'], output_names=['output']) | |
# Quantize ONNX model to 8-bit | |
quantized_model_path = "model_quantized.onnx" | |
quantize_dynamic(onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8) | |
# Load quantized ONNX model | |
session = ort.InferenceSession(quantized_model_path) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image Gradio Template | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=30, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt] | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
demo.queue().launch() | |