sd3-shecodes / app.py
Aditibaheti's picture
Update app.py
02c6c67 verified
raw
history blame
5.29 kB
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set your Hugging Face token
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
login(token=HUGGINGFACE_TOKEN)
# Path to your model repository and safetensors weights
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
lora_weights_path = "./pytorch_lora_weights.safetensors"
# Load the base model
pipeline = DiffusionPipeline.from_pretrained(
base_model_repo,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_auth_token=HUGGINGFACE_TOKEN
)
pipeline.load_lora_weights(lora_weights_path)
# Comment out the line for sequential CPU offloading
# pipeline.enable_sequential_cpu_offload()
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
body {
background-color: #ffffff; /* Myntra's white background */
color: #282c3f; /* Myntra's primary text color */
font-family: 'Arial', sans-serif;
}
#col-container {
margin: 0 auto;
max-width: 720px;
padding: 20px;
border: 1px solid #ebebeb;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.gr-button {
background-color: #ff3f6c; /* Myntra's pink color */
color: white;
border: none;
padding: 10px 20px;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
margin-top: 10px;
}
.gr-button:hover {
background-color: #e62e5c; /* Darker shade for hover effect */
}
.gr-textbox, .gr-slider, .gr-checkbox, .gr-accordion {
margin-bottom: 20px;
}
.gr-markdown {
text-align: center;
font-size: 24px;
margin-bottom: 20px;
}
.gr-image {
border: 1px solid #ebebeb;
border-radius: 8px;
margin-top: 20px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Generation
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
for example in examples:
gr.Button(example).click(lambda e=example: prompt.set_value(e))
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()