import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from huggingface_hub import login import os device = "cuda" if torch.cuda.is_available() else "cpu" # Set your Hugging Face token HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") login(token=HUGGINGFACE_TOKEN) # Path to your model repository and safetensors weights base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers" lora_weights_path = "./pytorch_lora_weights.safetensors" # Load the base model pipeline = DiffusionPipeline.from_pretrained( base_model_repo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_auth_token=HUGGINGFACE_TOKEN ) pipeline.load_lora_weights(lora_weights_path) # Comment out the line for sequential CPU offloading # pipeline.enable_sequential_cpu_offload() pipeline = pipeline.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) image = pipeline( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=30, ) for example in examples: gr.Button(example).click(lambda e=example: prompt.set_value(e)) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()