File size: 22,975 Bytes
0d5bda6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import torch
import torch.nn as nn
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, AutoTokenizer,AutoModelForSequenceClassification
from scipy.special import softmax
from tqdm.notebook import tqdm
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
from rouge_score import rouge_scorer
from rouge import Rouge
import streamlit as st
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
import time
import io
import os
import pprint
from IPython.display import HTML
import traceback
import logging
import random
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import tensorflow as tf
st.set_page_config(page_title="Review Summary App", page_icon=None, layout="centered", initial_sidebar_state="auto", menu_items=None)
# st.set_page_config(layout="wide")
st.title("Review Summarizer App")
st.write("This app summarises all the reviews of a product")
@st.cache_resource#(allow_output_mutation=True)
def load_roberta_model_and_tokenizer(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return tokenizer, model
@st.cache_resource#(allow_output_mutation=True)
def load_pegasus_model_and_tokenizer(model_name):
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
return tokenizer, model
# =========================================================
# Define a function to assign labels based on star rating
# =========================================================
def assign_star_label(row):
return 'positive' if row['star_rating'] > 3 else 'negative'
def showEda(df):
pr = ProfileReport(df, explorative=True)
st.header('**Pandas Profiling Report**')
st_profile_report(pr)
def dataset_load():
with st.spinner("Importing modules................"):
time.sleep(2)
st.success("Imported Modules")
# ===================================================================================================================
# ================================================= UTILITY FUNCTIONS ===============================================
# ===================================================================================================================
with st.spinner("Initialising methods ............"):
# ==================
# Load & Clean Data
# ==================
@st.cache_data
def data_load_clean_df():
df = pd.read_csv('./amazon_reviews_us_Mobile_Electronics_v1_00.csv', on_bad_lines='skip')
# df = df.loc[df['product_id'].isin(['B00J46XO9U'])]
df = df[['customer_id','product_title','star_rating','review_body','product_id']]
df[~df.duplicated(subset='review_body')] #Remove duplicates
df = df.apply(lambda row: row[df['star_rating'].isin(['1','2','3','4','5'])]) # Remove date fields inside star_rating
df['star_rating']=df['star_rating'].astype('int64') # Convert data type for star_rating
df['star_rating_label'] = df.apply(assign_star_label, axis=1) # Apply the function to create the 'label' column
df['review_body'] = df['review_body'].apply(lambda x : str(x)) # Convert text inputs to STRING
df['review_body'] = df['review_body'].apply(lambda x : x[:512]) # Limit length of string
return df.reset_index(drop=True)
# ======================
# Assign Polarity Score
# ======================
def polarity_scores_roberta(review):
encoded_text = roberta_tokenizer(review, return_tensors='pt').to(device)
with torch.no_grad():
output = roberta_model(**encoded_text)
# scores = output[0][0].detach().numpy() # FOR CPU
scores = softmax(output.logits.detach().cpu().numpy()) # CONVERT from GPU to CPU
scores = softmax(scores[0])
scores_dict = {
'roberta_negative' : scores[0],
'roberta_positive' : scores[1]
}
return scores_dict
# ==================
# Summarising Text
# ==================
def text_summarizer(review):
batch = pegasus_tokenizer(review, truncation=True, padding="longest", max_length=1024, return_tensors="pt").to(device)
with torch.no_grad():
translated = pegasus_model.generate(**batch)
#translated = pegasus_model.module.generate(**batch) #When using Data Parallel
tgt_text = pegasus_tokenizer.batch_decode(translated, skip_special_tokens=True)
summary_dict = {"summary":tgt_text[0]}
return summary_dict
# =================
# Rouge Score Check
# =================
def rouge_score_viewer(original_text,generated_summary):
# Create a Rouge object
rouge = Rouge()
# Calculate ROUGE scores
scores = rouge.get_scores(generated_summary, original_text)
# Print ROUGE scores
return {"Rouge-1":scores[0]['rouge-1'],"Rouge-2":scores[0]['rouge-2'],"Rouge-L":scores[0]['rouge-l']}
# =======================================================
# Define a function to assign labels based on star rating
# =======================================================
def assign_label(row):
if row['roberta_positive'] > row['roberta_negative']:
return 'positive'
else:
return 'negative'
# =======================================================
# Summarise bunch of summaries together
# =======================================================
@st.cache_data
def data_summarizer(df, marker, summary_count):
summaries = []
marker = 'positive' if marker==1 else 'negative'
df_new = df[(df['star_rating_label']==marker) & (df['roberta_rating_label']==marker)]
df_new = df_new[~df_new.duplicated(subset=["review_body","summary"])]
sentence = df_new.sort_values(['roberta_positive','Rouge_1','Rouge_2','Rouge_L'],ascending=[False, False,False,False])['summary'].reset_index(drop=True) if marker==1 else df_new.sort_values(['roberta_negative','Rouge_1','Rouge_2','Rouge_L'],ascending=[False, False,False,False])['summary'].reset_index(drop=True)
print(sentence)
print(f"Sentence len :{len(sentence)}")
count=0
for i in range(0,len(sentence),10):
if(count==summary_count):
break
else:
chunk = sentence[i:i + 10]
joined_sentence = ' '.join(chunk)
print(f"JOINED SENTENCE :{joined_sentence}\n\n\n")
summaries.append(text_summarizer(joined_sentence[:512])["summary"])
count+=1
print(f"SUMMARY IS:{summaries}\n")
return summaries
# ==========================================================
# Convert the array to a markdown string with bullet points
# ==========================================================
def bullet_markdown(array):
return "\n".join(f"- {item}" for item in array)
# ==========================================================
# Get rows with same rating labels
# ==========================================================
def getMatchCols(df,value):
marker = "positive" if value == 1 else "negative"
df_new = df[(df['star_rating_label']==marker) & (df['roberta_rating_label']==marker)]
if df_new.shape[0]>0:
return df_new.sort_values(['roberta_positive','Rouge_1','Rouge_2','Rouge_L'],ascending=[False,False,False,False])['review_body'].values
else:
return [f"No {marker} reviews available"]
# =========================================================================================================================
# ================================================= LOADING OF THE DATA ===================================================
# =========================================================================================================================
## Load & Clean Data
with st.spinner("Loading the data ............"):
# st.header("Loaded Dataframe")
df = data_load_clean_df()
loaded_df = df.copy()
# Controlling the sidebar for loaded DF and new DF with selected product
ProductDataframeCheck = False
# TODO : Limit for demonstration only. Less rows to be analysed later
# df = df.groupby('product_id').filter(lambda x: (len(x) <= 5)).reset_index(drop=True)
st.header("The Dataframe loaded is shown below :")
with st.spinner("Loading the data ............"):
st.dataframe(df)
# =========================================================================================================================
# ================================================= LIST OF ALL PRODUCTS ==================================================
# =========================================================================================================================
with st.spinner("Loading list of products ............"):
time.sleep(2)
prod_ids = df['product_id'].unique()
# =========================================================================================================================
# ================================================= CHOOSE A PRODUCT ======================================================
# =========================================================================================================================
# Create a dual slider to select the range of product ids to display
st.markdown("---")
st.subheader("Step 0 : Choose a product")
# Group the dataframe by product_id and count the number of rows for each product_id
grouped_df = df.groupby("product_id").size().reset_index(name="count")
# st.dataframe(grouped_df)
# Find the product_id with the maximum number of rows and store it in max_rows
max_rows = grouped_df["count"].max()
# Create a slider in streamlit with min value as 0, and max value as max_rows
# slider_value = st.slider("Select the number of rows", min_value=1, max_value=max_rows)
slider_value = st.select_slider("Select the number of rows", options=sorted(grouped_df['count'].unique()),value=max(grouped_df['count']))
# Filter the grouped dataframe by the slider value and get the product_id column as a list
filtered_df = grouped_df[grouped_df["count"] == slider_value]["product_id"].tolist()
# Create a select box in streamlit with the filtered list of product_id
st.write(f"There are {len(filtered_df)} products with {slider_value} rows")
selected_product_id = st.selectbox("Select the product_id", filtered_df)
preview_df = df.loc[df['product_id']==selected_product_id].reset_index(drop=True)
if(not preview_df.empty):
prod_name = preview_df['product_title'][0]
# Display the selected product id
st.markdown("---")
st.subheader("Step 1 : Product Details :")
st.write(f'Product Name : {prod_name}')
st.write(f'Product ID : {selected_product_id} ')
st.write(f'Total Rows : {preview_df.shape[0]}')
#================================================================
# Use the condition to control the display of the radio buttons
#================================================================
if(not preview_df.empty):
ProductDataframeCheck = True
if (not ProductDataframeCheck):
option = st.sidebar.radio("Select an option", ["None","Show EDA"])
else:
option = st.sidebar.radio("Select an option", ["None","Show EDA", "Product EDA"])
if(option=="Show EDA"):
showEda(loaded_df)
elif option=="Product EDA":
showEda(preview_df)
if st.button('Confirm Product'):
df = df.loc[df['product_id']==selected_product_id].reset_index(drop=True)
st.markdown("---")
st.subheader("Step 2 : Dataframe with chosen product :")
st.dataframe(df)
# st.success(f"Dataframe loaded with product_id:{selected_product_id}")
# st.write(f"Selected product is {selected_product_id}, named as \"{df['product_title']}\" with dataframe having {df.shape[0]} rows")
df_rows = df.shape[0]
# =========================================================================================================================
# ================================================ PRE-TRAINED MODEL ======================================================
# =========================================================================================================================
st.markdown("---")
st.subheader("Step 3 : Initialising the models & running operation")
with st.spinner("Initializing RoBERTa Model ............"):
device = "cuda" if torch.cuda.is_available() else "cpu"
st.write(f"Selected device for processing is (CPU/GPU) : {device.upper()}")
# ROBERTA Model
with st.spinner("Initializing RoBERTa Model ............"):
# roberta_model_name = f"siebert/sentiment-roberta-large-english"
# roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_name)
# roberta_model = AutoModelForSequenceClassification.from_pretrained(roberta_model_name).to(device)
roberta_model_name = "siebert/sentiment-roberta-large-english"
roberta_tokenizer, roberta_model = load_roberta_model_and_tokenizer(roberta_model_name)
roberta_model.to(device)
# PEGASUS Model
with st.spinner("Initializing Pegasus Model ............"):
# pegasus_model_name = "google/pegasus-large"
# pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_model_name)
# pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name).to(device)
pegasus_model_name = "google/pegasus-large"
pegasus_tokenizer, pegasus_model = load_pegasus_model_and_tokenizer(pegasus_model_name)
pegasus_model.to(device)
st.success("Models successfully loaded")
# =========================================================================================================================
# ================================================ RUN MODEL ON DATA ======================================================
# =========================================================================================================================
# Sentimental Analysis & Text Summarisation
res = {}
summaries = {}
rouge_1 = {}
rouge_2 = {}
rouge_L = {}
broken_ids = []
with st.spinner("Operation in progress ............"):
progress_bar_analysis = st.progress((0/len(df))*100, text="Please wait......... 0%")
progress_percent = 0
progress_text = f"Please wait......... {float(progress_percent):.2f}%"
for i, row in tqdm(df.iterrows(), total=len(df)):
progress_percent = (i/len(df))*100
progress_text = f"Please wait......... {progress_percent:.2f}%"
progress_bar_analysis.progress(int(progress_percent+1), text=progress_text)
# Process Sentimental Analysis
text = row['review_body']
myid = row['customer_id']
roberta_result = polarity_scores_roberta(text)
both = {**roberta_result}
res[myid] = both
# Process Summaries
summary_result = text_summarizer(text)
summaries[myid] = {**summary_result}
#Rouge SCore
original_text = row['review_body']
generated_summary = summary_result['summary']
rouge_scores = rouge_score_viewer(original_text,generated_summary)
rouge_1[myid]={"rouge-1":rouge_scores['Rouge-1']['f']}
rouge_2[myid]={"rouge-2":rouge_scores['Rouge-2']['f']}
rouge_L[myid]={"rouge-L":rouge_scores['Rouge-L']['f']}
progress_bar_analysis.progress(int(100), text="Completed......... 100%")
st.success("Operation Completed")
with st.spinner("Merging in progress ............"):
# Merge dataframes
results_df = pd.DataFrame(res).T
results_df['summary'] = (pd.DataFrame(summaries).T)['summary'].values #Add summary column
results_df['Rouge_1'] = pd.DataFrame(rouge_1).T[:].values
results_df['Rouge_2'] = pd.DataFrame(rouge_2).T[:].values
results_df['Rouge_L'] = pd.DataFrame(rouge_L).T[:].values
results_df = results_df.reset_index().rename(columns={'index': 'customer_id'})
results_df = results_df.merge(df, how='left')
results_df['roberta_rating_label'] = results_df.apply(assign_label, axis=1) # Apply the function to create the 'label' column
st.markdown("---")
st.subheader("Step 4 : Dataframe after operation")
# st.dataframe(results_df)
# st.success("Merge Completed")
with st.spinner("Matching Columns in progress ............"):
# prod_a = results_df.loc[results_df['product_id']=='B00J46XO9U']
prod_a = results_df.copy()
prod_a = prod_a[prod_a['star_rating_label'] == prod_a['roberta_rating_label']]
prod_a.reset_index(drop=True)
# st.success("Matching columns Completed")
# st.header("Dataframe with matching labels")
st.dataframe(prod_a)
# =========================================================================================================================
# ============================================= HISTOGRAM CHECK ======================================================
# =========================================================================================================================
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_1'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_2'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_L'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# =========================================================================================================================
# ============================================= CHECKING THE METRICS ======================================================
# =========================================================================================================================
# RUN only if NUMBER OF ROWS > 4
if(df_rows>4):
with st.spinner("Creating confusion matrix ............"):
st.markdown("---")
st.subheader("Step 5. - Confusion Matrix")
# Sample confusion matrix (replace this with your actual data)
conf_df = results_df.copy()
actual_labels = conf_df['star_rating_label']
predicted_labels = conf_df['roberta_rating_label']
# Create the confusion matrix
cm_a = confusion_matrix(actual_labels, predicted_labels)
# Display the confusion matrix using seaborn
st.set_option('deprecation.showPyplotGlobalUse', False)
sns.heatmap(cm_a, annot=True, fmt='d')
st.pyplot()
# Extract true positives, false positives, false negatives, true negatives
tn, fp, fn, tp = cm_a.ravel()
# Calculate accuracy
accuracy = accuracy_score(actual_labels, predicted_labels)
# Calculate precision, recall, and F1 score
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * (precision * recall) / (precision + recall)
st.write(f"Accuracy :{accuracy*100:.2f} | Precision :{precision:.2f} | Recall:{recall:.2f} | F1-Score:{f1:.2f}")
# =========================================================================================================================
# ============================================= SUMMARRY OF PRODUCT =======================================================
# =========================================================================================================================
st.markdown("---")
st.subheader("Step 6 : Summary of product")
choice = 10#st.number_input("Choose number of summaries", 0, 10)
# POSITIVE SUMMARIES
st.header("Positive Reviews Summary")
if(df_rows<=10):
st.markdown(bullet_markdown(getMatchCols(prod_a,1)))
else:
with st.spinner("Generating Positive Summaries ............"):
sum_list_pos = data_summarizer(prod_a,1,choice)
st.markdown(bullet_markdown(sum_list_pos))
# NEGATIVE SUMMARIES
st.header("Negative Reviews Summary")
if(df_rows<=10):
st.markdown(bullet_markdown(getMatchCols(prod_a,0)))
else:
with st.spinner("Generating Negative Summaries ............"):
sum_list_neg =data_summarizer(prod_a,0,choice)
st.markdown(bullet_markdown(sum_list_neg))
dataset_load() |