rkf2778's picture
Update torch device information
a0c88a6
raw
history blame
23.1 kB
import torch
import torch.nn as nn
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, AutoTokenizer,AutoModelForSequenceClassification
from scipy.special import softmax
from tqdm.notebook import tqdm
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
from rouge_score import rouge_scorer
from rouge import Rouge
import streamlit as st
from ydata_profiling import ProfileReport
from streamlit_pandas_profiling import st_profile_report
import time
import io
import os
import pprint
from IPython.display import HTML
import traceback
import logging
import random
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import tensorflow as tf
st.set_page_config(page_title="Review Summary App", page_icon=None, layout="centered", initial_sidebar_state="auto", menu_items=None)
# st.set_page_config(layout="wide")
st.title("Review Summarizer App")
st.write("This app summarises all the reviews of a product")
@st.cache_resource#(allow_output_mutation=True)
def load_roberta_model_and_tokenizer(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return tokenizer, model
@st.cache_resource#(allow_output_mutation=True)
def load_pegasus_model_and_tokenizer(model_name):
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
return tokenizer, model
# =========================================================
# Define a function to assign labels based on star rating
# =========================================================
def assign_star_label(row):
return 'positive' if row['star_rating'] > 3 else 'negative'
def showEda(df):
pr = ProfileReport(df, explorative=True)
st.header('**Pandas Profiling Report**')
st_profile_report(pr)
def dataset_load():
with st.spinner("Importing modules................"):
time.sleep(2)
st.success("Imported Modules")
# ===================================================================================================================
# ================================================= UTILITY FUNCTIONS ===============================================
# ===================================================================================================================
with st.spinner("Initialising methods ............"):
# ==================
# Load & Clean Data
# ==================
@st.cache_data
def data_load_clean_df():
df = pd.read_csv('./amazon_reviews_us_Mobile_Electronics_v1_00.csv', on_bad_lines='skip')
# df = df.loc[df['product_id'].isin(['B00J46XO9U'])]
df = df[['customer_id','product_title','star_rating','review_body','product_id']]
df[~df.duplicated(subset='review_body')] #Remove duplicates
df = df.apply(lambda row: row[df['star_rating'].isin(['1','2','3','4','5'])]) # Remove date fields inside star_rating
df['star_rating']=df['star_rating'].astype('int64') # Convert data type for star_rating
df['star_rating_label'] = df.apply(assign_star_label, axis=1) # Apply the function to create the 'label' column
df['review_body'] = df['review_body'].apply(lambda x : str(x)) # Convert text inputs to STRING
df['review_body'] = df['review_body'].apply(lambda x : x[:512]) # Limit length of string
return df.reset_index(drop=True)
# ======================
# Assign Polarity Score
# ======================
def polarity_scores_roberta(review):
encoded_text = roberta_tokenizer(review, return_tensors='pt').to(device)
with torch.no_grad():
output = roberta_model(**encoded_text)
# scores = output[0][0].detach().numpy() # FOR CPU
scores = softmax(output.logits.detach().cpu().numpy()) # CONVERT from GPU to CPU
scores = softmax(scores[0])
scores_dict = {
'roberta_negative' : scores[0],
'roberta_positive' : scores[1]
}
return scores_dict
# ==================
# Summarising Text
# ==================
def text_summarizer(review):
batch = pegasus_tokenizer(review, truncation=True, padding="longest", max_length=1024, return_tensors="pt").to(device)
with torch.no_grad():
translated = pegasus_model.generate(**batch)
#translated = pegasus_model.module.generate(**batch) #When using Data Parallel
tgt_text = pegasus_tokenizer.batch_decode(translated, skip_special_tokens=True)
summary_dict = {"summary":tgt_text[0]}
return summary_dict
# =================
# Rouge Score Check
# =================
def rouge_score_viewer(original_text,generated_summary):
# Create a Rouge object
rouge = Rouge()
# Calculate ROUGE scores
scores = rouge.get_scores(generated_summary, original_text)
# Print ROUGE scores
return {"Rouge-1":scores[0]['rouge-1'],"Rouge-2":scores[0]['rouge-2'],"Rouge-L":scores[0]['rouge-l']}
# =======================================================
# Define a function to assign labels based on star rating
# =======================================================
def assign_label(row):
if row['roberta_positive'] > row['roberta_negative']:
return 'positive'
else:
return 'negative'
# =======================================================
# Summarise bunch of summaries together
# =======================================================
@st.cache_data
def data_summarizer(df, marker, summary_count):
summaries = []
marker = 'positive' if marker==1 else 'negative'
df_new = df[(df['star_rating_label']==marker) & (df['roberta_rating_label']==marker)]
df_new = df_new[~df_new.duplicated(subset=["review_body","summary"])]
sentence = df_new.sort_values(['roberta_positive','Rouge_1','Rouge_2','Rouge_L'],ascending=[False, False,False,False])['summary'].reset_index(drop=True) if marker==1 else df_new.sort_values(['roberta_negative','Rouge_1','Rouge_2','Rouge_L'],ascending=[False, False,False,False])['summary'].reset_index(drop=True)
print(sentence)
print(f"Sentence len :{len(sentence)}")
count=0
for i in range(0,len(sentence),10):
if(count==summary_count):
break
else:
chunk = sentence[i:i + 10]
joined_sentence = ' '.join(chunk)
print(f"JOINED SENTENCE :{joined_sentence}\n\n\n")
summaries.append(text_summarizer(joined_sentence[:512])["summary"])
count+=1
print(f"SUMMARY IS:{summaries}\n")
return summaries
# ==========================================================
# Convert the array to a markdown string with bullet points
# ==========================================================
def bullet_markdown(array):
return "\n".join(f"- {item}" for item in array)
# ==========================================================
# Get rows with same rating labels
# ==========================================================
def getMatchCols(df,value):
marker = "positive" if value == 1 else "negative"
df_new = df[(df['star_rating_label']==marker) & (df['roberta_rating_label']==marker)]
if df_new.shape[0]>0:
return df_new.sort_values(['roberta_positive','Rouge_1','Rouge_2','Rouge_L'],ascending=[False,False,False,False])['review_body'].values
else:
return [f"No {marker} reviews available"]
# =========================================================================================================================
# ================================================= LOADING OF THE DATA ===================================================
# =========================================================================================================================
## Load & Clean Data
with st.spinner("Loading the data ............"):
# st.header("Loaded Dataframe")
df = data_load_clean_df()
loaded_df = df.copy()
# Controlling the sidebar for loaded DF and new DF with selected product
ProductDataframeCheck = False
# TODO : Limit for demonstration only. Less rows to be analysed later
# df = df.groupby('product_id').filter(lambda x: (len(x) <= 5)).reset_index(drop=True)
st.header("The Dataframe loaded is shown below :")
with st.spinner("Loading the data ............"):
st.dataframe(df)
# =========================================================================================================================
# ================================================= LIST OF ALL PRODUCTS ==================================================
# =========================================================================================================================
with st.spinner("Loading list of products ............"):
time.sleep(2)
prod_ids = df['product_id'].unique()
# =========================================================================================================================
# ================================================= CHOOSE A PRODUCT ======================================================
# =========================================================================================================================
# Create a dual slider to select the range of product ids to display
st.markdown("---")
st.subheader("Step 0 : Choose a product")
# Group the dataframe by product_id and count the number of rows for each product_id
grouped_df = df.groupby("product_id").size().reset_index(name="count")
# st.dataframe(grouped_df)
# Find the product_id with the maximum number of rows and store it in max_rows
max_rows = grouped_df["count"].max()
# Create a slider in streamlit with min value as 0, and max value as max_rows
# slider_value = st.slider("Select the number of rows", min_value=1, max_value=max_rows)
slider_value = st.select_slider("Select the number of rows", options=sorted(grouped_df['count'].unique()),value=max(grouped_df['count']))
# Filter the grouped dataframe by the slider value and get the product_id column as a list
filtered_df = grouped_df[grouped_df["count"] == slider_value]["product_id"].tolist()
# Create a select box in streamlit with the filtered list of product_id
st.write(f"There are {len(filtered_df)} products with {slider_value} rows")
selected_product_id = st.selectbox("Select the product_id", filtered_df)
preview_df = df.loc[df['product_id']==selected_product_id].reset_index(drop=True)
if(not preview_df.empty):
prod_name = preview_df['product_title'][0]
# Display the selected product id
st.markdown("---")
st.subheader("Step 1 : Product Details :")
st.write(f'Product Name : {prod_name}')
st.write(f'Product ID : {selected_product_id} ')
st.write(f'Total Rows : {preview_df.shape[0]}')
device = "cuda" if torch.cuda.is_available() else "cpu"
st.write(f"Selected device for processing is (CPU/GPU) : {device.upper()}")
#================================================================
# Use the condition to control the display of the radio buttons
#================================================================
if(not preview_df.empty):
ProductDataframeCheck = True
if (not ProductDataframeCheck):
option = st.sidebar.radio("Select an option", ["None","Show EDA"])
else:
option = st.sidebar.radio("Select an option", ["None","Show EDA", "Product EDA"])
if(option=="Show EDA"):
showEda(loaded_df)
elif option=="Product EDA":
showEda(preview_df)
if st.button('Confirm Product'):
df = df.loc[df['product_id']==selected_product_id].reset_index(drop=True)
st.markdown("---")
st.subheader("Step 2 : Dataframe with chosen product :")
st.dataframe(df)
# st.success(f"Dataframe loaded with product_id:{selected_product_id}")
# st.write(f"Selected product is {selected_product_id}, named as \"{df['product_title']}\" with dataframe having {df.shape[0]} rows")
df_rows = df.shape[0]
# =========================================================================================================================
# ================================================ PRE-TRAINED MODEL ======================================================
# =========================================================================================================================
st.markdown("---")
st.subheader("Step 3 : Initialising the models & running operation")
#with st.spinner("Initializing RoBERTa Model ............"):
#device = "cuda" if torch.cuda.is_available() else "cpu"
#st.write(f"Selected device for processing is (CPU/GPU) : {device.upper()}")
# ROBERTA Model
with st.spinner("Initializing RoBERTa Model ............"):
# roberta_model_name = f"siebert/sentiment-roberta-large-english"
# roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_name)
# roberta_model = AutoModelForSequenceClassification.from_pretrained(roberta_model_name).to(device)
roberta_model_name = "siebert/sentiment-roberta-large-english"
roberta_tokenizer, roberta_model = load_roberta_model_and_tokenizer(roberta_model_name)
roberta_model.to(device)
# PEGASUS Model
with st.spinner("Initializing Pegasus Model ............"):
# pegasus_model_name = "google/pegasus-large"
# pegasus_tokenizer = PegasusTokenizer.from_pretrained(pegasus_model_name)
# pegasus_model = PegasusForConditionalGeneration.from_pretrained(pegasus_model_name).to(device)
pegasus_model_name = "google/pegasus-large"
pegasus_tokenizer, pegasus_model = load_pegasus_model_and_tokenizer(pegasus_model_name)
pegasus_model.to(device)
st.success("Models successfully loaded")
# =========================================================================================================================
# ================================================ RUN MODEL ON DATA ======================================================
# =========================================================================================================================
# Sentimental Analysis & Text Summarisation
res = {}
summaries = {}
rouge_1 = {}
rouge_2 = {}
rouge_L = {}
broken_ids = []
with st.spinner("Operation in progress ............"):
progress_bar_analysis = st.progress((0/len(df))*100, text="Please wait......... 0%")
progress_percent = 0
progress_text = f"Please wait......... {float(progress_percent):.2f}%"
for i, row in tqdm(df.iterrows(), total=len(df)):
progress_percent = (i/len(df))*100
progress_text = f"Please wait......... {progress_percent:.2f}%"
progress_bar_analysis.progress(int(progress_percent+1), text=progress_text)
# Process Sentimental Analysis
text = row['review_body']
myid = row['customer_id']
roberta_result = polarity_scores_roberta(text)
both = {**roberta_result}
res[myid] = both
# Process Summaries
summary_result = text_summarizer(text)
summaries[myid] = {**summary_result}
#Rouge SCore
original_text = row['review_body']
generated_summary = summary_result['summary']
rouge_scores = rouge_score_viewer(original_text,generated_summary)
rouge_1[myid]={"rouge-1":rouge_scores['Rouge-1']['f']}
rouge_2[myid]={"rouge-2":rouge_scores['Rouge-2']['f']}
rouge_L[myid]={"rouge-L":rouge_scores['Rouge-L']['f']}
progress_bar_analysis.progress(int(100), text="Completed......... 100%")
st.success("Operation Completed")
with st.spinner("Merging in progress ............"):
# Merge dataframes
results_df = pd.DataFrame(res).T
results_df['summary'] = (pd.DataFrame(summaries).T)['summary'].values #Add summary column
results_df['Rouge_1'] = pd.DataFrame(rouge_1).T[:].values
results_df['Rouge_2'] = pd.DataFrame(rouge_2).T[:].values
results_df['Rouge_L'] = pd.DataFrame(rouge_L).T[:].values
results_df = results_df.reset_index().rename(columns={'index': 'customer_id'})
results_df = results_df.merge(df, how='left')
results_df['roberta_rating_label'] = results_df.apply(assign_label, axis=1) # Apply the function to create the 'label' column
st.markdown("---")
st.subheader("Step 4 : Dataframe after operation")
# st.dataframe(results_df)
# st.success("Merge Completed")
with st.spinner("Matching Columns in progress ............"):
# prod_a = results_df.loc[results_df['product_id']=='B00J46XO9U']
prod_a = results_df.copy()
prod_a = prod_a[prod_a['star_rating_label'] == prod_a['roberta_rating_label']]
prod_a.reset_index(drop=True)
# st.success("Matching columns Completed")
# st.header("Dataframe with matching labels")
st.dataframe(prod_a)
# =========================================================================================================================
# ============================================= HISTOGRAM CHECK ======================================================
# =========================================================================================================================
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_1'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_2'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# # Create a histogram using matplotlib
# plt.figure(figsize=(8, 6))
# plt.hist(prod_a['Rouge_L'], bins=30, alpha=0.7, color='blue') # Adjust bins and color as needed
# plt.title('Histogram of Random Data')
# plt.xlabel('Values')
# plt.ylabel('Frequency')
# plt.grid(True)
# plt.show()
# =========================================================================================================================
# ============================================= CHECKING THE METRICS ======================================================
# =========================================================================================================================
# RUN only if NUMBER OF ROWS > 4
if(df_rows>4):
with st.spinner("Creating confusion matrix ............"):
st.markdown("---")
st.subheader("Step 5. - Confusion Matrix")
# Sample confusion matrix (replace this with your actual data)
conf_df = results_df.copy()
actual_labels = conf_df['star_rating_label']
predicted_labels = conf_df['roberta_rating_label']
# Create the confusion matrix
cm_a = confusion_matrix(actual_labels, predicted_labels)
# Display the confusion matrix using seaborn
st.set_option('deprecation.showPyplotGlobalUse', False)
sns.heatmap(cm_a, annot=True, fmt='d')
st.pyplot()
# Extract true positives, false positives, false negatives, true negatives
tn, fp, fn, tp = cm_a.ravel()
# Calculate accuracy
accuracy = accuracy_score(actual_labels, predicted_labels)
# Calculate precision, recall, and F1 score
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2 * (precision * recall) / (precision + recall)
st.write(f"Accuracy :{accuracy*100:.2f} | Precision :{precision:.2f} | Recall:{recall:.2f} | F1-Score:{f1:.2f}")
# =========================================================================================================================
# ============================================= SUMMARRY OF PRODUCT =======================================================
# =========================================================================================================================
st.markdown("---")
st.subheader("Step 6 : Summary of product")
choice = 10#st.number_input("Choose number of summaries", 0, 10)
# POSITIVE SUMMARIES
st.header("Positive Reviews Summary")
if(df_rows<=10):
st.markdown(bullet_markdown(getMatchCols(prod_a,1)))
else:
with st.spinner("Generating Positive Summaries ............"):
sum_list_pos = data_summarizer(prod_a,1,choice)
st.markdown(bullet_markdown(sum_list_pos))
# NEGATIVE SUMMARIES
st.header("Negative Reviews Summary")
if(df_rows<=10):
st.markdown(bullet_markdown(getMatchCols(prod_a,0)))
else:
with st.spinner("Generating Negative Summaries ............"):
sum_list_neg =data_summarizer(prod_a,0,choice)
st.markdown(bullet_markdown(sum_list_neg))
dataset_load()