StableVITON / app.py
mpark's picture
import and install
2b917b0
raw
history blame
6.32 kB
import os
try:
import detectron2
import densepose
except ImportError:
os.system('pip install -e ./preprocess/detectron2')
os.system('pip install -e ./preprocess/detectron2/projects/DensePose')
import sys
import time
from pathlib import Path
import gradio as gr
import torch
from PIL import Image
from utils_stableviton import get_mask_location
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
os.environ['GRADIO_TEMP_DIR'] = './tmp' # TODO: turn off when final upload
openpose_model_hd = OpenPose(0)
parsing_model_hd = Parsing(0)
densepose_model_hd = DensePose4Gradio(
cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
)
stable_viton_model_hd = ... # TODO: write down stable viton model
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# import spaces # TODO: turn on when final upload
# @spaces.GPU # TODO: turn on when final upload
def process_hd(vton_img, garm_img, n_samples, n_steps, guidance_scale, seed):
model_type = 'hd'
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
with torch.no_grad():
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
stt = time.time()
print('load images... ', end='')
garm_img = Image.open(garm_img).resize((768, 1024))
vton_img = Image.open(vton_img).resize((768, 1024))
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get agnostic map... ', end='')
keypoints = openpose_model_hd(vton_img.resize((384, 512)))
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get densepose... ', end='')
vton_img = vton_img.resize((768, 1024)) # size for densepose
densepose = densepose_model_hd.execute(vton_img) # densepose
print('%.2fs' % (time.time() - stt))
# # stable viton here
# images = stable_viton_model_hd(
# vton_img,
# garm_img,
# masked_vton_img,
# densepose,
# n_samples,
# n_steps,
# guidance_scale,
# seed
# )
# return images
example_path = os.path.join(os.path.dirname(__file__), 'examples')
model_hd = os.path.join(example_path, 'model/model_1.png')
garment_hd = os.path.join(example_path, 'garment/00055_00.jpg')
with gr.Blocks(css='style.css') as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://arxiv.org/abs/2312.01725'>
<img src="https://img.shields.io/badge/arXiv-2312.01725-red">
</a>
&nbsp;
<a href='https://rlawjdghek.github.io/StableVITON/'>
<img src='https://img.shields.io/badge/page-github.io-blue.svg'>
</a>
&nbsp;
<a href='https://github.com/rlawjdghek/StableVITON'>
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
</a>
&nbsp;
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
</a>
</div>
</div>
</div>
"""
)
with gr.Row():
gr.Markdown("## Experience virtual try-on with your own images!")
with gr.Row():
with gr.Column():
vton_img = gr.Image(label="Model", type="filepath", height=384, value=model_hd)
example = gr.Examples(
inputs=vton_img,
examples_per_page=14,
examples=[
os.path.join(example_path, 'model/model_1.png'), # TODO more our models
os.path.join(example_path, 'model/model_2.png'),
os.path.join(example_path, 'model/model_3.png'),
])
with gr.Column():
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=garment_hd)
example = gr.Examples(
inputs=garm_img,
examples_per_page=14,
examples=[
os.path.join(example_path, 'garment/00055_00.jpg'),
os.path.join(example_path, 'garment/00126_00.jpg'),
os.path.join(example_path, 'garment/00151_00.jpg'),
])
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
with gr.Column():
run_button = gr.Button(value="Run")
# TODO: change default values (important!)
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips = [vton_img, garm_img, n_samples, n_steps, guidance_scale, seed]
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
demo.launch()