Spaces:
Running
Running
from io import BytesIO | |
from typing import Tuple | |
import wave | |
import gradio as gr | |
import numpy as np | |
from pydub.audio_segment import AudioSegment | |
import requests | |
from os.path import exists | |
from stt import Model | |
MODEL_NAMES = [ | |
# "With scorer", | |
"No scorer" | |
] | |
# download model | |
version = "v0.5" | |
storage_url = f"https://github.com/robinhad/voice-recognition-ua/releases/download/{version}" | |
model_name = "uk.tflite" | |
scorer_name = "kenlm.scorer" | |
model_link = f"{storage_url}/{model_name}" | |
scorer_link = f"{storage_url}/{scorer_name}" | |
def client(audio_data: np.array, sample_rate: int, use_scorer=False): | |
output_audio = _convert_audio(audio_data, sample_rate) | |
fin = wave.open(output_audio, 'rb') | |
audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) | |
fin.close() | |
ds = Model(model_name) | |
if use_scorer: | |
ds.enableExternalScorer("kenlm.scorer") | |
result = ds.stt(audio) | |
return result | |
def download(url, file_name): | |
if not exists(file_name): | |
print(f"Downloading {file_name}") | |
r = requests.get(url, allow_redirects=True) | |
with open(file_name, 'wb') as file: | |
file.write(r.content) | |
else: | |
print(f"Found {file_name}. Skipping download...") | |
def stt(audio: Tuple[int, np.array], model_name: str): | |
sample_rate, audio = audio | |
use_scorer = True if model_name == "With scorer" else False | |
if sample_rate != 16000: | |
raise ValueError("Incorrect sample rate.") | |
recognized_result = client(audio, sample_rate, use_scorer) | |
return recognized_result | |
def _convert_audio(audio_data: np.array, sample_rate: int): | |
source_audio = BytesIO() | |
source_audio.write(audio_data) | |
source_audio.seek(0) | |
output_audio = BytesIO() | |
wav_file = AudioSegment.from_raw( | |
source_audio, | |
channels=1, | |
sample_width=2, | |
frame_rate=sample_rate | |
) | |
wav_file.set_frame_rate(16000).set_channels( | |
1).export(output_audio, "wav", codec="pcm_s16le") | |
output_audio.seek(0) | |
return output_audio | |
iface = gr.Interface( | |
fn=stt, | |
inputs=[ | |
gr.inputs.Audio(type="numpy", | |
label=None, optional=False), | |
gr.inputs.Radio( | |
label="Виберіть Speech-to-Text модель", | |
choices=MODEL_NAMES, | |
), | |
], | |
outputs=gr.outputs.Textbox(label="Output"), | |
title="🐸🇺🇦 - Coqui STT", | |
theme="huggingface", | |
description="Україномовний🇺🇦 Speech-to-Text за допомогою Coqui STT", | |
article="Якщо вам подобається, підтримайте за посиланням: [SUPPORT LINK](https://send.monobank.ua/jar/48iHq4xAXm)", | |
) | |
download(model_link, model_name) | |
#download(scorer_link, scorer_name) | |
iface.launch() | |