Spaces:
Running
Running
Yurii Paniv
commited on
Commit
β’
42b6ec5
1
Parent(s):
2cbd7c6
Add train notebook
Browse files- wav2vec2/wav2vec_data.ipynb +0 -0
- wav2vec2/wav2vec_train.ipynb +1665 -0
wav2vec2/wav2vec_data.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
wav2vec2/wav2vec_train.ipynb
ADDED
@@ -0,0 +1,1665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"executionInfo": {
|
11 |
+
"elapsed": 829,
|
12 |
+
"status": "ok",
|
13 |
+
"timestamp": 1641588786523,
|
14 |
+
"user": {
|
15 |
+
"displayName": "Yurii Paniv",
|
16 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
17 |
+
"userId": "13095662915325887123"
|
18 |
+
},
|
19 |
+
"user_tz": -120
|
20 |
+
},
|
21 |
+
"id": "YELVqGxMxnbG",
|
22 |
+
"outputId": "876761c1-2e03-411b-e61b-07ac4ad61377"
|
23 |
+
},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"Wed Dec 28 21:13:08 2022 \n",
|
30 |
+
"+-----------------------------------------------------------------------------+\n",
|
31 |
+
"| NVIDIA-SMI 515.86.01 Driver Version: 515.86.01 CUDA Version: 11.7 |\n",
|
32 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
33 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
34 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
35 |
+
"| | | MIG M. |\n",
|
36 |
+
"|===============================+======================+======================|\n",
|
37 |
+
"| 0 NVIDIA GeForce ... Off | 00000000:0A:00.0 On | N/A |\n",
|
38 |
+
"| 0% 41C P8 24W / 390W | 1364MiB / 24576MiB | 0% Default |\n",
|
39 |
+
"| | | N/A |\n",
|
40 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
41 |
+
" \n",
|
42 |
+
"+-----------------------------------------------------------------------------+\n",
|
43 |
+
"| Processes: |\n",
|
44 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
45 |
+
"| ID ID Usage |\n",
|
46 |
+
"|=============================================================================|\n",
|
47 |
+
"| 0 N/A N/A 1345 G /usr/lib/xorg/Xorg 528MiB |\n",
|
48 |
+
"| 0 N/A N/A 2100 G /usr/bin/kwalletd5 4MiB |\n",
|
49 |
+
"| 0 N/A N/A 2266 G ...ec/xdg-desktop-portal-kde 4MiB |\n",
|
50 |
+
"| 0 N/A N/A 2303 G /usr/bin/ksmserver 4MiB |\n",
|
51 |
+
"| 0 N/A N/A 2305 G /usr/bin/kded5 4MiB |\n",
|
52 |
+
"| 0 N/A N/A 2306 G /usr/bin/kwin_x11 102MiB |\n",
|
53 |
+
"| 0 N/A N/A 2367 G /usr/bin/plasmashell 133MiB |\n",
|
54 |
+
"| 0 N/A N/A 2396 G ...de-authentication-agent-1 4MiB |\n",
|
55 |
+
"| 0 N/A N/A 2443 G ...x-gnu/libexec/kdeconnectd 4MiB |\n",
|
56 |
+
"| 0 N/A N/A 2445 G .../usr/bin/telegram-desktop 7MiB |\n",
|
57 |
+
"| 0 N/A N/A 2459 G /usr/bin/kaccess 4MiB |\n",
|
58 |
+
"| 0 N/A N/A 2484 G ...1/usr/lib/firefox/firefox 214MiB |\n",
|
59 |
+
"| 0 N/A N/A 2499 G .../libexec/DiscoverNotifier 4MiB |\n",
|
60 |
+
"| 0 N/A N/A 2784 G /usr/bin/dolphin 4MiB |\n",
|
61 |
+
"| 0 N/A N/A 2917 G /usr/bin/dolphin 4MiB |\n",
|
62 |
+
"| 0 N/A N/A 2997 G /usr/bin/dolphin 4MiB |\n",
|
63 |
+
"| 0 N/A N/A 3138 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
64 |
+
"| 0 N/A N/A 3158 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
65 |
+
"| 0 N/A N/A 3663 G /usr/bin/dolphin 4MiB |\n",
|
66 |
+
"| 0 N/A N/A 3768 G /usr/bin/dolphin 4MiB |\n",
|
67 |
+
"| 0 N/A N/A 3908 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
68 |
+
"| 0 N/A N/A 3964 G ...gnu/libexec/kf5/kioslave5 4MiB |\n",
|
69 |
+
"| 0 N/A N/A 4610 G ...RendererForSitePerProcess 293MiB |\n",
|
70 |
+
"+-----------------------------------------------------------------------------+\n"
|
71 |
+
]
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"source": [
|
75 |
+
"gpu_info = !nvidia-smi\n",
|
76 |
+
"gpu_info = '\\n'.join(gpu_info)\n",
|
77 |
+
"if gpu_info.find('failed') >= 0:\n",
|
78 |
+
" print('Not connected to a GPU')\n",
|
79 |
+
"else:\n",
|
80 |
+
" print(gpu_info)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 2,
|
86 |
+
"metadata": {
|
87 |
+
"colab": {
|
88 |
+
"base_uri": "https://localhost:8080/"
|
89 |
+
},
|
90 |
+
"executionInfo": {
|
91 |
+
"elapsed": 5334,
|
92 |
+
"status": "ok",
|
93 |
+
"timestamp": 1641588811766,
|
94 |
+
"user": {
|
95 |
+
"displayName": "Yurii Paniv",
|
96 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
97 |
+
"userId": "13095662915325887123"
|
98 |
+
},
|
99 |
+
"user_tz": -120
|
100 |
+
},
|
101 |
+
"id": "2MMXcWFFgCXU",
|
102 |
+
"outputId": "be9fd72e-4395-4cd0-ff87-631dad046e71"
|
103 |
+
},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"from datasets import load_from_disk, load_metric, Audio\n",
|
107 |
+
"\n",
|
108 |
+
"common_voice_train = load_from_disk(\"cached_dataset/cv_train\")\n",
|
109 |
+
"common_voice_test = load_from_disk(\"cached_dataset/cv_test\")"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 3,
|
115 |
+
"metadata": {
|
116 |
+
"id": "kAR0-2KLkopp"
|
117 |
+
},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"from transformers import Wav2Vec2FeatureExtractor\n",
|
121 |
+
"\n",
|
122 |
+
"feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 4,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"name": "stderr",
|
132 |
+
"output_type": "stream",
|
133 |
+
"text": [
|
134 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"source": [
|
139 |
+
"from transformers import Wav2Vec2CTCTokenizer\n",
|
140 |
+
"\n",
|
141 |
+
"tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(\"./\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 5,
|
147 |
+
"metadata": {
|
148 |
+
"id": "KYZtoW-tlZgl"
|
149 |
+
},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"from transformers import Wav2Vec2Processor\n",
|
153 |
+
"\n",
|
154 |
+
"processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": 6,
|
160 |
+
"metadata": {
|
161 |
+
"id": "tborvC9hx88e"
|
162 |
+
},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"import torch\n",
|
166 |
+
"\n",
|
167 |
+
"from dataclasses import dataclass, field\n",
|
168 |
+
"from typing import Any, Dict, List, Optional, Union\n",
|
169 |
+
"\n",
|
170 |
+
"@dataclass\n",
|
171 |
+
"class DataCollatorCTCWithPadding:\n",
|
172 |
+
" \"\"\"\n",
|
173 |
+
" Data collator that will dynamically pad the inputs received.\n",
|
174 |
+
" Args:\n",
|
175 |
+
" processor (:class:`~transformers.Wav2Vec2Processor`)\n",
|
176 |
+
" The processor used for proccessing the data.\n",
|
177 |
+
" padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
|
178 |
+
" Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
|
179 |
+
" among:\n",
|
180 |
+
" * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
|
181 |
+
" sequence if provided).\n",
|
182 |
+
" * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
|
183 |
+
" maximum acceptable input length for the model if that argument is not provided.\n",
|
184 |
+
" * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
|
185 |
+
" different lengths).\n",
|
186 |
+
" \"\"\"\n",
|
187 |
+
"\n",
|
188 |
+
" processor: Wav2Vec2Processor\n",
|
189 |
+
" padding: Union[bool, str] = True\n",
|
190 |
+
"\n",
|
191 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
192 |
+
" # split inputs and labels since they have to be of different lenghts and need\n",
|
193 |
+
" # different padding methods\n",
|
194 |
+
" input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
|
195 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
196 |
+
"\n",
|
197 |
+
" batch = self.processor.pad(\n",
|
198 |
+
" input_features,\n",
|
199 |
+
" padding=self.padding,\n",
|
200 |
+
" return_tensors=\"pt\",\n",
|
201 |
+
" )\n",
|
202 |
+
" with self.processor.as_target_processor():\n",
|
203 |
+
" labels_batch = self.processor.pad(\n",
|
204 |
+
" label_features,\n",
|
205 |
+
" padding=self.padding,\n",
|
206 |
+
" return_tensors=\"pt\",\n",
|
207 |
+
" )\n",
|
208 |
+
"\n",
|
209 |
+
" # replace padding with -100 to ignore loss correctly\n",
|
210 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
211 |
+
"\n",
|
212 |
+
" batch[\"labels\"] = labels\n",
|
213 |
+
"\n",
|
214 |
+
" return batch"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"cell_type": "code",
|
219 |
+
"execution_count": 7,
|
220 |
+
"metadata": {
|
221 |
+
"id": "lbQf5GuZyQ4_"
|
222 |
+
},
|
223 |
+
"outputs": [],
|
224 |
+
"source": [
|
225 |
+
"data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"execution_count": 8,
|
231 |
+
"metadata": {
|
232 |
+
"id": "9Xsux2gmyXso"
|
233 |
+
},
|
234 |
+
"outputs": [],
|
235 |
+
"source": [
|
236 |
+
"wer_metric = load_metric(\"wer\")\n",
|
237 |
+
"cer_metric = load_metric(\"cer\")\n",
|
238 |
+
"metrics = [wer_metric, cer_metric]"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 9,
|
244 |
+
"metadata": {
|
245 |
+
"id": "1XZ-kjweyTy_"
|
246 |
+
},
|
247 |
+
"outputs": [],
|
248 |
+
"source": [
|
249 |
+
"import numpy as np\n",
|
250 |
+
"\n",
|
251 |
+
"def compute_metrics(pred):\n",
|
252 |
+
" pred_logits = pred.predictions\n",
|
253 |
+
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
|
254 |
+
"\n",
|
255 |
+
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
256 |
+
"\n",
|
257 |
+
" pred_str = processor.batch_decode(pred_ids)\n",
|
258 |
+
" # we do not want to group tokens when computing the metrics\n",
|
259 |
+
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
|
260 |
+
"\n",
|
261 |
+
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
262 |
+
" cer = cer_metric.compute(predictions=pred_str, references=label_str)\n",
|
263 |
+
"\n",
|
264 |
+
" return {\"wer\": wer, \"cer\": cer}"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": 10,
|
270 |
+
"metadata": {
|
271 |
+
"colab": {
|
272 |
+
"base_uri": "https://localhost:8080/"
|
273 |
+
},
|
274 |
+
"executionInfo": {
|
275 |
+
"elapsed": 9496,
|
276 |
+
"status": "ok",
|
277 |
+
"timestamp": 1641588938616,
|
278 |
+
"user": {
|
279 |
+
"displayName": "Yurii Paniv",
|
280 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
281 |
+
"userId": "13095662915325887123"
|
282 |
+
},
|
283 |
+
"user_tz": -120
|
284 |
+
},
|
285 |
+
"id": "e7cqAWIayn6w",
|
286 |
+
"outputId": "b7b20ce9-e1b2-473f-8032-2a75f98dfa9e"
|
287 |
+
},
|
288 |
+
"outputs": [
|
289 |
+
{
|
290 |
+
"name": "stderr",
|
291 |
+
"output_type": "stream",
|
292 |
+
"text": [
|
293 |
+
"Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_q.weight', 'quantizer.weight_proj.weight', 'project_q.bias', 'quantizer.weight_proj.bias', 'project_hid.bias', 'project_hid.weight', 'quantizer.codevectors']\n",
|
294 |
+
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
295 |
+
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
296 |
+
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
|
297 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
298 |
+
]
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"source": [
|
302 |
+
"from transformers import Wav2Vec2ForCTC\n",
|
303 |
+
"\n",
|
304 |
+
"model = Wav2Vec2ForCTC.from_pretrained(\n",
|
305 |
+
" \"facebook/wav2vec2-xls-r-300m\", \n",
|
306 |
+
" attention_dropout=0.3,\n",
|
307 |
+
" hidden_dropout=0.3,\n",
|
308 |
+
" feat_proj_dropout=0.3,\n",
|
309 |
+
" mask_time_prob=0.05,\n",
|
310 |
+
" layerdrop=0.3,\n",
|
311 |
+
" ctc_loss_reduction=\"mean\", \n",
|
312 |
+
" pad_token_id=processor.tokenizer.pad_token_id,\n",
|
313 |
+
" vocab_size=len(processor.tokenizer),\n",
|
314 |
+
")"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"cell_type": "code",
|
319 |
+
"execution_count": 11,
|
320 |
+
"metadata": {
|
321 |
+
"id": "oGI8zObtZ3V0"
|
322 |
+
},
|
323 |
+
"outputs": [
|
324 |
+
{
|
325 |
+
"name": "stderr",
|
326 |
+
"output_type": "stream",
|
327 |
+
"text": [
|
328 |
+
"/home/robinhad/Projects/unchanged/voice-recognition-ua/env/lib/python3.10/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1618: FutureWarning: The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5.Please use the equivalent `freeze_feature_encoder` method instead.\n",
|
329 |
+
" warnings.warn(\n"
|
330 |
+
]
|
331 |
+
}
|
332 |
+
],
|
333 |
+
"source": [
|
334 |
+
"model.freeze_feature_extractor()"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"cell_type": "code",
|
339 |
+
"execution_count": 12,
|
340 |
+
"metadata": {
|
341 |
+
"id": "KbeKSV7uzGPP"
|
342 |
+
},
|
343 |
+
"outputs": [],
|
344 |
+
"source": [
|
345 |
+
"from transformers import TrainingArguments\n",
|
346 |
+
"\n",
|
347 |
+
"repo_name = \"wav2vec2-xls-r-base-uk\"\n",
|
348 |
+
"\n",
|
349 |
+
"training_args = TrainingArguments(\n",
|
350 |
+
" output_dir=repo_name,\n",
|
351 |
+
" group_by_length=True,\n",
|
352 |
+
" per_device_train_batch_size=24,\n",
|
353 |
+
" per_device_eval_batch_size=24, \n",
|
354 |
+
" gradient_accumulation_steps=6,\n",
|
355 |
+
" eval_accumulation_steps=6,\n",
|
356 |
+
" evaluation_strategy=\"epoch\",\n",
|
357 |
+
" save_strategy=\"epoch\",\n",
|
358 |
+
" logging_strategy=\"epoch\",\n",
|
359 |
+
" num_train_epochs=150,\n",
|
360 |
+
" gradient_checkpointing=True,\n",
|
361 |
+
" fp16=True,\n",
|
362 |
+
" #save_steps=1,\n",
|
363 |
+
" #eval_steps=1,\n",
|
364 |
+
" #logging_steps=1,\n",
|
365 |
+
" learning_rate=3e-4,\n",
|
366 |
+
" warmup_steps=500,\n",
|
367 |
+
" save_total_limit=2,\n",
|
368 |
+
" report_to=\"tensorboard\",\n",
|
369 |
+
" load_best_model_at_end=True,\n",
|
370 |
+
" metric_for_best_model=\"cer\",\n",
|
371 |
+
" greater_is_better=False\n",
|
372 |
+
")"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": 14,
|
378 |
+
"metadata": {
|
379 |
+
"colab": {
|
380 |
+
"base_uri": "https://localhost:8080/"
|
381 |
+
},
|
382 |
+
"executionInfo": {
|
383 |
+
"elapsed": 11063,
|
384 |
+
"status": "ok",
|
385 |
+
"timestamp": 1641588949674,
|
386 |
+
"user": {
|
387 |
+
"displayName": "Yurii Paniv",
|
388 |
+
"photoUrl": "https://lh3.googleusercontent.com/a/default-user=s64",
|
389 |
+
"userId": "13095662915325887123"
|
390 |
+
},
|
391 |
+
"user_tz": -120
|
392 |
+
},
|
393 |
+
"id": "rY7vBmFCPFgC",
|
394 |
+
"outputId": "2e89d5ea-5b25-44bf-8492-a6220b0b1c38"
|
395 |
+
},
|
396 |
+
"outputs": [
|
397 |
+
{
|
398 |
+
"name": "stderr",
|
399 |
+
"output_type": "stream",
|
400 |
+
"text": [
|
401 |
+
"Using cuda_amp half precision backend\n"
|
402 |
+
]
|
403 |
+
}
|
404 |
+
],
|
405 |
+
"source": [
|
406 |
+
"from transformers import Trainer\n",
|
407 |
+
"\n",
|
408 |
+
"trainer = Trainer(\n",
|
409 |
+
" model=model,\n",
|
410 |
+
" data_collator=data_collator,\n",
|
411 |
+
" args=training_args,\n",
|
412 |
+
" compute_metrics=compute_metrics,\n",
|
413 |
+
" train_dataset=common_voice_train,\n",
|
414 |
+
" eval_dataset=common_voice_test,\n",
|
415 |
+
" tokenizer=processor.feature_extractor,\n",
|
416 |
+
")"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": null,
|
422 |
+
"metadata": {
|
423 |
+
"colab": {
|
424 |
+
"base_uri": "https://localhost:8080/",
|
425 |
+
"height": 409
|
426 |
+
},
|
427 |
+
"id": "9fRr9TG5pGBl",
|
428 |
+
"outputId": "c2a7c797-326c-4bd2-b167-9d2f41d77def"
|
429 |
+
},
|
430 |
+
"outputs": [
|
431 |
+
{
|
432 |
+
"name": "stderr",
|
433 |
+
"output_type": "stream",
|
434 |
+
"text": [
|
435 |
+
"Loading model from wav2vec2-xls-r-base-uk/checkpoint-7505.\n",
|
436 |
+
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
437 |
+
"/home/robinhad/Projects/unchanged/voice-recognition-ua/env/lib/python3.10/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
438 |
+
" warnings.warn(\n",
|
439 |
+
"***** Running training *****\n",
|
440 |
+
" Num examples = 11463\n",
|
441 |
+
" Num Epochs = 150\n",
|
442 |
+
" Instantaneous batch size per device = 24\n",
|
443 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 144\n",
|
444 |
+
" Gradient Accumulation steps = 6\n",
|
445 |
+
" Total optimization steps = 11850\n",
|
446 |
+
" Continuing training from checkpoint, will skip to saved global_step\n",
|
447 |
+
" Continuing training from epoch 95\n",
|
448 |
+
" Continuing training from global step 7505\n",
|
449 |
+
" Will skip the first 95 epochs then the first 0 batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` flag to your launch command, but you will resume the training on data already seen by your model.\n"
|
450 |
+
]
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"data": {
|
454 |
+
"application/vnd.jupyter.widget-view+json": {
|
455 |
+
"model_id": "d39c143147e7431a91cf50b54464cbee",
|
456 |
+
"version_major": 2,
|
457 |
+
"version_minor": 0
|
458 |
+
},
|
459 |
+
"text/plain": [
|
460 |
+
"0it [00:00, ?it/s]"
|
461 |
+
]
|
462 |
+
},
|
463 |
+
"metadata": {},
|
464 |
+
"output_type": "display_data"
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"data": {
|
468 |
+
"text/html": [
|
469 |
+
"\n",
|
470 |
+
" <div>\n",
|
471 |
+
" \n",
|
472 |
+
" <progress value='7910' max='11850' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
473 |
+
" [ 7910/11850 45:49 < 7:28:05, 0.15 it/s, Epoch 100.11/150]\n",
|
474 |
+
" </div>\n",
|
475 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
476 |
+
" <thead>\n",
|
477 |
+
" <tr style=\"text-align: left;\">\n",
|
478 |
+
" <th>Epoch</th>\n",
|
479 |
+
" <th>Training Loss</th>\n",
|
480 |
+
" <th>Validation Loss</th>\n",
|
481 |
+
" <th>Wer</th>\n",
|
482 |
+
" <th>Cer</th>\n",
|
483 |
+
" </tr>\n",
|
484 |
+
" </thead>\n",
|
485 |
+
" <tbody>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <td>95</td>\n",
|
488 |
+
" <td>0.271200</td>\n",
|
489 |
+
" <td>0.596927</td>\n",
|
490 |
+
" <td>0.519565</td>\n",
|
491 |
+
" <td>0.128453</td>\n",
|
492 |
+
" </tr>\n",
|
493 |
+
" <tr>\n",
|
494 |
+
" <td>96</td>\n",
|
495 |
+
" <td>0.279300</td>\n",
|
496 |
+
" <td>0.595789</td>\n",
|
497 |
+
" <td>0.516518</td>\n",
|
498 |
+
" <td>0.128272</td>\n",
|
499 |
+
" </tr>\n",
|
500 |
+
" <tr>\n",
|
501 |
+
" <td>97</td>\n",
|
502 |
+
" <td>0.276800</td>\n",
|
503 |
+
" <td>0.623400</td>\n",
|
504 |
+
" <td>0.512582</td>\n",
|
505 |
+
" <td>0.127275</td>\n",
|
506 |
+
" </tr>\n",
|
507 |
+
" <tr>\n",
|
508 |
+
" <td>98</td>\n",
|
509 |
+
" <td>0.266000</td>\n",
|
510 |
+
" <td>0.617245</td>\n",
|
511 |
+
" <td>0.519181</td>\n",
|
512 |
+
" <td>0.130092</td>\n",
|
513 |
+
" </tr>\n",
|
514 |
+
" <tr>\n",
|
515 |
+
" <td>99</td>\n",
|
516 |
+
" <td>0.281600</td>\n",
|
517 |
+
" <td>0.606772</td>\n",
|
518 |
+
" <td>0.512401</td>\n",
|
519 |
+
" <td>0.128527</td>\n",
|
520 |
+
" </tr>\n",
|
521 |
+
" </tbody>\n",
|
522 |
+
"</table><p>"
|
523 |
+
],
|
524 |
+
"text/plain": [
|
525 |
+
"<IPython.core.display.HTML object>"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
"metadata": {},
|
529 |
+
"output_type": "display_data"
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"name": "stderr",
|
533 |
+
"output_type": "stream",
|
534 |
+
"text": [
|
535 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
536 |
+
"***** Running Evaluation *****\n",
|
537 |
+
" Num examples = 6783\n",
|
538 |
+
" Batch size = 24\n",
|
539 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7584\n",
|
540 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7584/config.json\n",
|
541 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7584/pytorch_model.bin\n",
|
542 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7584/preprocessor_config.json\n",
|
543 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7505] due to args.save_total_limit\n",
|
544 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
545 |
+
"***** Running Evaluation *****\n",
|
546 |
+
" Num examples = 6783\n",
|
547 |
+
" Batch size = 24\n",
|
548 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7663\n",
|
549 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7663/config.json\n",
|
550 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7663/pytorch_model.bin\n",
|
551 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7663/preprocessor_config.json\n",
|
552 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7584] due to args.save_total_limit\n",
|
553 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
554 |
+
"***** Running Evaluation *****\n",
|
555 |
+
" Num examples = 6783\n",
|
556 |
+
" Batch size = 24\n",
|
557 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7742\n",
|
558 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7742/config.json\n",
|
559 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7742/pytorch_model.bin\n",
|
560 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7742/preprocessor_config.json\n",
|
561 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7663] due to args.save_total_limit\n",
|
562 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
563 |
+
"***** Running Evaluation *****\n",
|
564 |
+
" Num examples = 6783\n",
|
565 |
+
" Batch size = 24\n",
|
566 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7821\n",
|
567 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7821/config.json\n",
|
568 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7821/pytorch_model.bin\n",
|
569 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7821/preprocessor_config.json\n",
|
570 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7742] due to args.save_total_limit\n",
|
571 |
+
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2ForCTC.forward`, you can safely ignore this message.\n",
|
572 |
+
"***** Running Evaluation *****\n",
|
573 |
+
" Num examples = 6783\n",
|
574 |
+
" Batch size = 24\n",
|
575 |
+
"Saving model checkpoint to wav2vec2-xls-r-base-uk/checkpoint-7900\n",
|
576 |
+
"Configuration saved in wav2vec2-xls-r-base-uk/checkpoint-7900/config.json\n",
|
577 |
+
"Model weights saved in wav2vec2-xls-r-base-uk/checkpoint-7900/pytorch_model.bin\n",
|
578 |
+
"Feature extractor saved in wav2vec2-xls-r-base-uk/checkpoint-7900/preprocessor_config.json\n",
|
579 |
+
"Deleting older checkpoint [wav2vec2-xls-r-base-uk/checkpoint-7821] due to args.save_total_limit\n"
|
580 |
+
]
|
581 |
+
}
|
582 |
+
],
|
583 |
+
"source": [
|
584 |
+
"trainer.train(resume_from_checkpoint=True)"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"cell_type": "code",
|
589 |
+
"execution_count": null,
|
590 |
+
"metadata": {},
|
591 |
+
"outputs": [],
|
592 |
+
"source": [
|
593 |
+
"trainer.create_model_card()"
|
594 |
+
]
|
595 |
+
}
|
596 |
+
],
|
597 |
+
"metadata": {
|
598 |
+
"accelerator": "GPU",
|
599 |
+
"colab": {
|
600 |
+
"collapsed_sections": [],
|
601 |
+
"machine_shape": "hm",
|
602 |
+
"name": "ΠΠΎΠΏΡΡ Π·Π°ΠΏΠΈΡΠ½ΠΈΠΊΠ° \"Fine-Tune XLS-R on Common Voice.ipynb\"",
|
603 |
+
"provenance": [
|
604 |
+
{
|
605 |
+
"file_id": "https://github.com/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLS_R_on_Common_Voice.ipynb",
|
606 |
+
"timestamp": 1641583715050
|
607 |
+
}
|
608 |
+
]
|
609 |
+
},
|
610 |
+
"kernelspec": {
|
611 |
+
"display_name": "Python 3 (ipykernel)",
|
612 |
+
"language": "python",
|
613 |
+
"name": "python3"
|
614 |
+
},
|
615 |
+
"language_info": {
|
616 |
+
"codemirror_mode": {
|
617 |
+
"name": "ipython",
|
618 |
+
"version": 3
|
619 |
+
},
|
620 |
+
"file_extension": ".py",
|
621 |
+
"mimetype": "text/x-python",
|
622 |
+
"name": "python",
|
623 |
+
"nbconvert_exporter": "python",
|
624 |
+
"pygments_lexer": "ipython3",
|
625 |
+
"version": "3.10.6"
|
626 |
+
},
|
627 |
+
"vscode": {
|
628 |
+
"interpreter": {
|
629 |
+
"hash": "a5cdd9abf8df3af0fd61fdb3838d6c6f2f66a9ba4bf4484f45cd88abf9f04fe9"
|
630 |
+
}
|
631 |
+
},
|
632 |
+
"widgets": {
|
633 |
+
"application/vnd.jupyter.widget-state+json": {
|
634 |
+
"04ec68b059df4c628839c3ac29e2ebdd": {
|
635 |
+
"model_module": "@jupyter-widgets/controls",
|
636 |
+
"model_module_version": "1.5.0",
|
637 |
+
"model_name": "DescriptionStyleModel",
|
638 |
+
"state": {
|
639 |
+
"_model_module": "@jupyter-widgets/controls",
|
640 |
+
"_model_module_version": "1.5.0",
|
641 |
+
"_model_name": "DescriptionStyleModel",
|
642 |
+
"_view_count": null,
|
643 |
+
"_view_module": "@jupyter-widgets/base",
|
644 |
+
"_view_module_version": "1.2.0",
|
645 |
+
"_view_name": "StyleView",
|
646 |
+
"description_width": ""
|
647 |
+
}
|
648 |
+
},
|
649 |
+
"05d8496d54174ae298c319b0194fc710": {
|
650 |
+
"model_module": "@jupyter-widgets/base",
|
651 |
+
"model_module_version": "1.2.0",
|
652 |
+
"model_name": "LayoutModel",
|
653 |
+
"state": {
|
654 |
+
"_model_module": "@jupyter-widgets/base",
|
655 |
+
"_model_module_version": "1.2.0",
|
656 |
+
"_model_name": "LayoutModel",
|
657 |
+
"_view_count": null,
|
658 |
+
"_view_module": "@jupyter-widgets/base",
|
659 |
+
"_view_module_version": "1.2.0",
|
660 |
+
"_view_name": "LayoutView",
|
661 |
+
"align_content": null,
|
662 |
+
"align_items": null,
|
663 |
+
"align_self": null,
|
664 |
+
"border": null,
|
665 |
+
"bottom": null,
|
666 |
+
"display": null,
|
667 |
+
"flex": null,
|
668 |
+
"flex_flow": null,
|
669 |
+
"grid_area": null,
|
670 |
+
"grid_auto_columns": null,
|
671 |
+
"grid_auto_flow": null,
|
672 |
+
"grid_auto_rows": null,
|
673 |
+
"grid_column": null,
|
674 |
+
"grid_gap": null,
|
675 |
+
"grid_row": null,
|
676 |
+
"grid_template_areas": null,
|
677 |
+
"grid_template_columns": null,
|
678 |
+
"grid_template_rows": null,
|
679 |
+
"height": null,
|
680 |
+
"justify_content": null,
|
681 |
+
"justify_items": null,
|
682 |
+
"left": null,
|
683 |
+
"margin": null,
|
684 |
+
"max_height": null,
|
685 |
+
"max_width": null,
|
686 |
+
"min_height": null,
|
687 |
+
"min_width": null,
|
688 |
+
"object_fit": null,
|
689 |
+
"object_position": null,
|
690 |
+
"order": null,
|
691 |
+
"overflow": null,
|
692 |
+
"overflow_x": null,
|
693 |
+
"overflow_y": null,
|
694 |
+
"padding": null,
|
695 |
+
"right": null,
|
696 |
+
"top": null,
|
697 |
+
"visibility": null,
|
698 |
+
"width": null
|
699 |
+
}
|
700 |
+
},
|
701 |
+
"116786d9364a4a57b521cddaabeda688": {
|
702 |
+
"model_module": "@jupyter-widgets/controls",
|
703 |
+
"model_module_version": "1.5.0",
|
704 |
+
"model_name": "HBoxModel",
|
705 |
+
"state": {
|
706 |
+
"_dom_classes": [],
|
707 |
+
"_model_module": "@jupyter-widgets/controls",
|
708 |
+
"_model_module_version": "1.5.0",
|
709 |
+
"_model_name": "HBoxModel",
|
710 |
+
"_view_count": null,
|
711 |
+
"_view_module": "@jupyter-widgets/controls",
|
712 |
+
"_view_module_version": "1.5.0",
|
713 |
+
"_view_name": "HBoxView",
|
714 |
+
"box_style": "",
|
715 |
+
"children": [
|
716 |
+
"IPY_MODEL_a1e2c04dc2cb45ea80bec125e3dbf56f",
|
717 |
+
"IPY_MODEL_b6d46d40efa14b21814f41531f5a2f41",
|
718 |
+
"IPY_MODEL_d8bf8dc5d6c84140a4e96c9c435b8f17"
|
719 |
+
],
|
720 |
+
"layout": "IPY_MODEL_9baa2f69aa9c4387bf1086a04ed78420"
|
721 |
+
}
|
722 |
+
},
|
723 |
+
"18bc63944343440f837cdff76db004fc": {
|
724 |
+
"model_module": "@jupyter-widgets/controls",
|
725 |
+
"model_module_version": "1.5.0",
|
726 |
+
"model_name": "HTMLModel",
|
727 |
+
"state": {
|
728 |
+
"_dom_classes": [],
|
729 |
+
"_model_module": "@jupyter-widgets/controls",
|
730 |
+
"_model_module_version": "1.5.0",
|
731 |
+
"_model_name": "HTMLModel",
|
732 |
+
"_view_count": null,
|
733 |
+
"_view_module": "@jupyter-widgets/controls",
|
734 |
+
"_view_module_version": "1.5.0",
|
735 |
+
"_view_name": "HTMLView",
|
736 |
+
"description": "",
|
737 |
+
"description_tooltip": null,
|
738 |
+
"layout": "IPY_MODEL_a4ae510b4f3845f891a796cf844fc2bb",
|
739 |
+
"placeholder": "β",
|
740 |
+
"style": "IPY_MODEL_e6e50da6516847878309fdc5c463edb3",
|
741 |
+
"value": " 6962/6962 [01:46<00:00, 78.15ex/s]"
|
742 |
+
}
|
743 |
+
},
|
744 |
+
"1f3abdf2e0f6459da4179a94d691c4c4": {
|
745 |
+
"model_module": "@jupyter-widgets/controls",
|
746 |
+
"model_module_version": "1.5.0",
|
747 |
+
"model_name": "FloatProgressModel",
|
748 |
+
"state": {
|
749 |
+
"_dom_classes": [],
|
750 |
+
"_model_module": "@jupyter-widgets/controls",
|
751 |
+
"_model_module_version": "1.5.0",
|
752 |
+
"_model_name": "FloatProgressModel",
|
753 |
+
"_view_count": null,
|
754 |
+
"_view_module": "@jupyter-widgets/controls",
|
755 |
+
"_view_module_version": "1.5.0",
|
756 |
+
"_view_name": "ProgressView",
|
757 |
+
"bar_style": "success",
|
758 |
+
"description": "",
|
759 |
+
"description_tooltip": null,
|
760 |
+
"layout": "IPY_MODEL_c31a747e18df4b4aa4449a30e387448c",
|
761 |
+
"max": 1,
|
762 |
+
"min": 0,
|
763 |
+
"orientation": "horizontal",
|
764 |
+
"style": "IPY_MODEL_414efa8a08cd491cb78af8a95a151daa",
|
765 |
+
"value": 1
|
766 |
+
}
|
767 |
+
},
|
768 |
+
"22ba979142074f1d976e1a905544fd2d": {
|
769 |
+
"model_module": "@jupyter-widgets/base",
|
770 |
+
"model_module_version": "1.2.0",
|
771 |
+
"model_name": "LayoutModel",
|
772 |
+
"state": {
|
773 |
+
"_model_module": "@jupyter-widgets/base",
|
774 |
+
"_model_module_version": "1.2.0",
|
775 |
+
"_model_name": "LayoutModel",
|
776 |
+
"_view_count": null,
|
777 |
+
"_view_module": "@jupyter-widgets/base",
|
778 |
+
"_view_module_version": "1.2.0",
|
779 |
+
"_view_name": "LayoutView",
|
780 |
+
"align_content": null,
|
781 |
+
"align_items": null,
|
782 |
+
"align_self": null,
|
783 |
+
"border": null,
|
784 |
+
"bottom": null,
|
785 |
+
"display": null,
|
786 |
+
"flex": null,
|
787 |
+
"flex_flow": null,
|
788 |
+
"grid_area": null,
|
789 |
+
"grid_auto_columns": null,
|
790 |
+
"grid_auto_flow": null,
|
791 |
+
"grid_auto_rows": null,
|
792 |
+
"grid_column": null,
|
793 |
+
"grid_gap": null,
|
794 |
+
"grid_row": null,
|
795 |
+
"grid_template_areas": null,
|
796 |
+
"grid_template_columns": null,
|
797 |
+
"grid_template_rows": null,
|
798 |
+
"height": null,
|
799 |
+
"justify_content": null,
|
800 |
+
"justify_items": null,
|
801 |
+
"left": null,
|
802 |
+
"margin": null,
|
803 |
+
"max_height": null,
|
804 |
+
"max_width": null,
|
805 |
+
"min_height": null,
|
806 |
+
"min_width": null,
|
807 |
+
"object_fit": null,
|
808 |
+
"object_position": null,
|
809 |
+
"order": null,
|
810 |
+
"overflow": null,
|
811 |
+
"overflow_x": null,
|
812 |
+
"overflow_y": null,
|
813 |
+
"padding": null,
|
814 |
+
"right": null,
|
815 |
+
"top": null,
|
816 |
+
"visibility": null,
|
817 |
+
"width": null
|
818 |
+
}
|
819 |
+
},
|
820 |
+
"3dedffa30b774426bd474072a3a0d591": {
|
821 |
+
"model_module": "@jupyter-widgets/controls",
|
822 |
+
"model_module_version": "1.5.0",
|
823 |
+
"model_name": "DescriptionStyleModel",
|
824 |
+
"state": {
|
825 |
+
"_model_module": "@jupyter-widgets/controls",
|
826 |
+
"_model_module_version": "1.5.0",
|
827 |
+
"_model_name": "DescriptionStyleModel",
|
828 |
+
"_view_count": null,
|
829 |
+
"_view_module": "@jupyter-widgets/base",
|
830 |
+
"_view_module_version": "1.2.0",
|
831 |
+
"_view_name": "StyleView",
|
832 |
+
"description_width": ""
|
833 |
+
}
|
834 |
+
},
|
835 |
+
"414efa8a08cd491cb78af8a95a151daa": {
|
836 |
+
"model_module": "@jupyter-widgets/controls",
|
837 |
+
"model_module_version": "1.5.0",
|
838 |
+
"model_name": "ProgressStyleModel",
|
839 |
+
"state": {
|
840 |
+
"_model_module": "@jupyter-widgets/controls",
|
841 |
+
"_model_module_version": "1.5.0",
|
842 |
+
"_model_name": "ProgressStyleModel",
|
843 |
+
"_view_count": null,
|
844 |
+
"_view_module": "@jupyter-widgets/base",
|
845 |
+
"_view_module_version": "1.2.0",
|
846 |
+
"_view_name": "StyleView",
|
847 |
+
"bar_color": null,
|
848 |
+
"description_width": ""
|
849 |
+
}
|
850 |
+
},
|
851 |
+
"427056895c674c428400bee0f5b43995": {
|
852 |
+
"model_module": "@jupyter-widgets/base",
|
853 |
+
"model_module_version": "1.2.0",
|
854 |
+
"model_name": "LayoutModel",
|
855 |
+
"state": {
|
856 |
+
"_model_module": "@jupyter-widgets/base",
|
857 |
+
"_model_module_version": "1.2.0",
|
858 |
+
"_model_name": "LayoutModel",
|
859 |
+
"_view_count": null,
|
860 |
+
"_view_module": "@jupyter-widgets/base",
|
861 |
+
"_view_module_version": "1.2.0",
|
862 |
+
"_view_name": "LayoutView",
|
863 |
+
"align_content": null,
|
864 |
+
"align_items": null,
|
865 |
+
"align_self": null,
|
866 |
+
"border": null,
|
867 |
+
"bottom": null,
|
868 |
+
"display": null,
|
869 |
+
"flex": null,
|
870 |
+
"flex_flow": null,
|
871 |
+
"grid_area": null,
|
872 |
+
"grid_auto_columns": null,
|
873 |
+
"grid_auto_flow": null,
|
874 |
+
"grid_auto_rows": null,
|
875 |
+
"grid_column": null,
|
876 |
+
"grid_gap": null,
|
877 |
+
"grid_row": null,
|
878 |
+
"grid_template_areas": null,
|
879 |
+
"grid_template_columns": null,
|
880 |
+
"grid_template_rows": null,
|
881 |
+
"height": null,
|
882 |
+
"justify_content": null,
|
883 |
+
"justify_items": null,
|
884 |
+
"left": null,
|
885 |
+
"margin": null,
|
886 |
+
"max_height": null,
|
887 |
+
"max_width": null,
|
888 |
+
"min_height": null,
|
889 |
+
"min_width": null,
|
890 |
+
"object_fit": null,
|
891 |
+
"object_position": null,
|
892 |
+
"order": null,
|
893 |
+
"overflow": null,
|
894 |
+
"overflow_x": null,
|
895 |
+
"overflow_y": null,
|
896 |
+
"padding": null,
|
897 |
+
"right": null,
|
898 |
+
"top": null,
|
899 |
+
"visibility": null,
|
900 |
+
"width": null
|
901 |
+
}
|
902 |
+
},
|
903 |
+
"445c84e1e2e541f2a54fb989def386ae": {
|
904 |
+
"model_module": "@jupyter-widgets/base",
|
905 |
+
"model_module_version": "1.2.0",
|
906 |
+
"model_name": "LayoutModel",
|
907 |
+
"state": {
|
908 |
+
"_model_module": "@jupyter-widgets/base",
|
909 |
+
"_model_module_version": "1.2.0",
|
910 |
+
"_model_name": "LayoutModel",
|
911 |
+
"_view_count": null,
|
912 |
+
"_view_module": "@jupyter-widgets/base",
|
913 |
+
"_view_module_version": "1.2.0",
|
914 |
+
"_view_name": "LayoutView",
|
915 |
+
"align_content": null,
|
916 |
+
"align_items": null,
|
917 |
+
"align_self": null,
|
918 |
+
"border": null,
|
919 |
+
"bottom": null,
|
920 |
+
"display": null,
|
921 |
+
"flex": null,
|
922 |
+
"flex_flow": null,
|
923 |
+
"grid_area": null,
|
924 |
+
"grid_auto_columns": null,
|
925 |
+
"grid_auto_flow": null,
|
926 |
+
"grid_auto_rows": null,
|
927 |
+
"grid_column": null,
|
928 |
+
"grid_gap": null,
|
929 |
+
"grid_row": null,
|
930 |
+
"grid_template_areas": null,
|
931 |
+
"grid_template_columns": null,
|
932 |
+
"grid_template_rows": null,
|
933 |
+
"height": null,
|
934 |
+
"justify_content": null,
|
935 |
+
"justify_items": null,
|
936 |
+
"left": null,
|
937 |
+
"margin": null,
|
938 |
+
"max_height": null,
|
939 |
+
"max_width": null,
|
940 |
+
"min_height": null,
|
941 |
+
"min_width": null,
|
942 |
+
"object_fit": null,
|
943 |
+
"object_position": null,
|
944 |
+
"order": null,
|
945 |
+
"overflow": null,
|
946 |
+
"overflow_x": null,
|
947 |
+
"overflow_y": null,
|
948 |
+
"padding": null,
|
949 |
+
"right": null,
|
950 |
+
"top": null,
|
951 |
+
"visibility": null,
|
952 |
+
"width": null
|
953 |
+
}
|
954 |
+
},
|
955 |
+
"48c60be3ca9349a295b83f65769c7f27": {
|
956 |
+
"model_module": "@jupyter-widgets/controls",
|
957 |
+
"model_module_version": "1.5.0",
|
958 |
+
"model_name": "HTMLModel",
|
959 |
+
"state": {
|
960 |
+
"_dom_classes": [],
|
961 |
+
"_model_module": "@jupyter-widgets/controls",
|
962 |
+
"_model_module_version": "1.5.0",
|
963 |
+
"_model_name": "HTMLModel",
|
964 |
+
"_view_count": null,
|
965 |
+
"_view_module": "@jupyter-widgets/controls",
|
966 |
+
"_view_module_version": "1.5.0",
|
967 |
+
"_view_name": "HTMLView",
|
968 |
+
"description": "",
|
969 |
+
"description_tooltip": null,
|
970 |
+
"layout": "IPY_MODEL_05d8496d54174ae298c319b0194fc710",
|
971 |
+
"placeholder": "β",
|
972 |
+
"style": "IPY_MODEL_3dedffa30b774426bd474072a3a0d591",
|
973 |
+
"value": " 1/1 [00:00<00:00, 11.09ba/s]"
|
974 |
+
}
|
975 |
+
},
|
976 |
+
"5815ae1348994bfebba4a8e968489a96": {
|
977 |
+
"model_module": "@jupyter-widgets/controls",
|
978 |
+
"model_module_version": "1.5.0",
|
979 |
+
"model_name": "DescriptionStyleModel",
|
980 |
+
"state": {
|
981 |
+
"_model_module": "@jupyter-widgets/controls",
|
982 |
+
"_model_module_version": "1.5.0",
|
983 |
+
"_model_name": "DescriptionStyleModel",
|
984 |
+
"_view_count": null,
|
985 |
+
"_view_module": "@jupyter-widgets/base",
|
986 |
+
"_view_module_version": "1.2.0",
|
987 |
+
"_view_name": "StyleView",
|
988 |
+
"description_width": ""
|
989 |
+
}
|
990 |
+
},
|
991 |
+
"5c2a7fea8c434d51ada69a0854b88baf": {
|
992 |
+
"model_module": "@jupyter-widgets/base",
|
993 |
+
"model_module_version": "1.2.0",
|
994 |
+
"model_name": "LayoutModel",
|
995 |
+
"state": {
|
996 |
+
"_model_module": "@jupyter-widgets/base",
|
997 |
+
"_model_module_version": "1.2.0",
|
998 |
+
"_model_name": "LayoutModel",
|
999 |
+
"_view_count": null,
|
1000 |
+
"_view_module": "@jupyter-widgets/base",
|
1001 |
+
"_view_module_version": "1.2.0",
|
1002 |
+
"_view_name": "LayoutView",
|
1003 |
+
"align_content": null,
|
1004 |
+
"align_items": null,
|
1005 |
+
"align_self": null,
|
1006 |
+
"border": null,
|
1007 |
+
"bottom": null,
|
1008 |
+
"display": null,
|
1009 |
+
"flex": null,
|
1010 |
+
"flex_flow": null,
|
1011 |
+
"grid_area": null,
|
1012 |
+
"grid_auto_columns": null,
|
1013 |
+
"grid_auto_flow": null,
|
1014 |
+
"grid_auto_rows": null,
|
1015 |
+
"grid_column": null,
|
1016 |
+
"grid_gap": null,
|
1017 |
+
"grid_row": null,
|
1018 |
+
"grid_template_areas": null,
|
1019 |
+
"grid_template_columns": null,
|
1020 |
+
"grid_template_rows": null,
|
1021 |
+
"height": null,
|
1022 |
+
"justify_content": null,
|
1023 |
+
"justify_items": null,
|
1024 |
+
"left": null,
|
1025 |
+
"margin": null,
|
1026 |
+
"max_height": null,
|
1027 |
+
"max_width": null,
|
1028 |
+
"min_height": null,
|
1029 |
+
"min_width": null,
|
1030 |
+
"object_fit": null,
|
1031 |
+
"object_position": null,
|
1032 |
+
"order": null,
|
1033 |
+
"overflow": null,
|
1034 |
+
"overflow_x": null,
|
1035 |
+
"overflow_y": null,
|
1036 |
+
"padding": null,
|
1037 |
+
"right": null,
|
1038 |
+
"top": null,
|
1039 |
+
"visibility": null,
|
1040 |
+
"width": null
|
1041 |
+
}
|
1042 |
+
},
|
1043 |
+
"68502fb433564eee8dfdf272ed7e4f56": {
|
1044 |
+
"model_module": "@jupyter-widgets/controls",
|
1045 |
+
"model_module_version": "1.5.0",
|
1046 |
+
"model_name": "HTMLModel",
|
1047 |
+
"state": {
|
1048 |
+
"_dom_classes": [],
|
1049 |
+
"_model_module": "@jupyter-widgets/controls",
|
1050 |
+
"_model_module_version": "1.5.0",
|
1051 |
+
"_model_name": "HTMLModel",
|
1052 |
+
"_view_count": null,
|
1053 |
+
"_view_module": "@jupyter-widgets/controls",
|
1054 |
+
"_view_module_version": "1.5.0",
|
1055 |
+
"_view_name": "HTMLView",
|
1056 |
+
"description": "",
|
1057 |
+
"description_tooltip": null,
|
1058 |
+
"layout": "IPY_MODEL_5c2a7fea8c434d51ada69a0854b88baf",
|
1059 |
+
"placeholder": "β",
|
1060 |
+
"style": "IPY_MODEL_6c80bd8a8fe14a5989fe27445c14650f",
|
1061 |
+
"value": "100%"
|
1062 |
+
}
|
1063 |
+
},
|
1064 |
+
"6c80bd8a8fe14a5989fe27445c14650f": {
|
1065 |
+
"model_module": "@jupyter-widgets/controls",
|
1066 |
+
"model_module_version": "1.5.0",
|
1067 |
+
"model_name": "DescriptionStyleModel",
|
1068 |
+
"state": {
|
1069 |
+
"_model_module": "@jupyter-widgets/controls",
|
1070 |
+
"_model_module_version": "1.5.0",
|
1071 |
+
"_model_name": "DescriptionStyleModel",
|
1072 |
+
"_view_count": null,
|
1073 |
+
"_view_module": "@jupyter-widgets/base",
|
1074 |
+
"_view_module_version": "1.2.0",
|
1075 |
+
"_view_name": "StyleView",
|
1076 |
+
"description_width": ""
|
1077 |
+
}
|
1078 |
+
},
|
1079 |
+
"77f1a51099b24831ad8b2be3d2dc833a": {
|
1080 |
+
"model_module": "@jupyter-widgets/base",
|
1081 |
+
"model_module_version": "1.2.0",
|
1082 |
+
"model_name": "LayoutModel",
|
1083 |
+
"state": {
|
1084 |
+
"_model_module": "@jupyter-widgets/base",
|
1085 |
+
"_model_module_version": "1.2.0",
|
1086 |
+
"_model_name": "LayoutModel",
|
1087 |
+
"_view_count": null,
|
1088 |
+
"_view_module": "@jupyter-widgets/base",
|
1089 |
+
"_view_module_version": "1.2.0",
|
1090 |
+
"_view_name": "LayoutView",
|
1091 |
+
"align_content": null,
|
1092 |
+
"align_items": null,
|
1093 |
+
"align_self": null,
|
1094 |
+
"border": null,
|
1095 |
+
"bottom": null,
|
1096 |
+
"display": null,
|
1097 |
+
"flex": null,
|
1098 |
+
"flex_flow": null,
|
1099 |
+
"grid_area": null,
|
1100 |
+
"grid_auto_columns": null,
|
1101 |
+
"grid_auto_flow": null,
|
1102 |
+
"grid_auto_rows": null,
|
1103 |
+
"grid_column": null,
|
1104 |
+
"grid_gap": null,
|
1105 |
+
"grid_row": null,
|
1106 |
+
"grid_template_areas": null,
|
1107 |
+
"grid_template_columns": null,
|
1108 |
+
"grid_template_rows": null,
|
1109 |
+
"height": null,
|
1110 |
+
"justify_content": null,
|
1111 |
+
"justify_items": null,
|
1112 |
+
"left": null,
|
1113 |
+
"margin": null,
|
1114 |
+
"max_height": null,
|
1115 |
+
"max_width": null,
|
1116 |
+
"min_height": null,
|
1117 |
+
"min_width": null,
|
1118 |
+
"object_fit": null,
|
1119 |
+
"object_position": null,
|
1120 |
+
"order": null,
|
1121 |
+
"overflow": null,
|
1122 |
+
"overflow_x": null,
|
1123 |
+
"overflow_y": null,
|
1124 |
+
"padding": null,
|
1125 |
+
"right": null,
|
1126 |
+
"top": null,
|
1127 |
+
"visibility": null,
|
1128 |
+
"width": null
|
1129 |
+
}
|
1130 |
+
},
|
1131 |
+
"8b6b7f28751c45c8869aa86eb2a0ab26": {
|
1132 |
+
"model_module": "@jupyter-widgets/controls",
|
1133 |
+
"model_module_version": "1.5.0",
|
1134 |
+
"model_name": "HBoxModel",
|
1135 |
+
"state": {
|
1136 |
+
"_dom_classes": [],
|
1137 |
+
"_model_module": "@jupyter-widgets/controls",
|
1138 |
+
"_model_module_version": "1.5.0",
|
1139 |
+
"_model_name": "HBoxModel",
|
1140 |
+
"_view_count": null,
|
1141 |
+
"_view_module": "@jupyter-widgets/controls",
|
1142 |
+
"_view_module_version": "1.5.0",
|
1143 |
+
"_view_name": "HBoxView",
|
1144 |
+
"box_style": "",
|
1145 |
+
"children": [
|
1146 |
+
"IPY_MODEL_68502fb433564eee8dfdf272ed7e4f56",
|
1147 |
+
"IPY_MODEL_1f3abdf2e0f6459da4179a94d691c4c4",
|
1148 |
+
"IPY_MODEL_48c60be3ca9349a295b83f65769c7f27"
|
1149 |
+
],
|
1150 |
+
"layout": "IPY_MODEL_445c84e1e2e541f2a54fb989def386ae"
|
1151 |
+
}
|
1152 |
+
},
|
1153 |
+
"9baa2f69aa9c4387bf1086a04ed78420": {
|
1154 |
+
"model_module": "@jupyter-widgets/base",
|
1155 |
+
"model_module_version": "1.2.0",
|
1156 |
+
"model_name": "LayoutModel",
|
1157 |
+
"state": {
|
1158 |
+
"_model_module": "@jupyter-widgets/base",
|
1159 |
+
"_model_module_version": "1.2.0",
|
1160 |
+
"_model_name": "LayoutModel",
|
1161 |
+
"_view_count": null,
|
1162 |
+
"_view_module": "@jupyter-widgets/base",
|
1163 |
+
"_view_module_version": "1.2.0",
|
1164 |
+
"_view_name": "LayoutView",
|
1165 |
+
"align_content": null,
|
1166 |
+
"align_items": null,
|
1167 |
+
"align_self": null,
|
1168 |
+
"border": null,
|
1169 |
+
"bottom": null,
|
1170 |
+
"display": null,
|
1171 |
+
"flex": null,
|
1172 |
+
"flex_flow": null,
|
1173 |
+
"grid_area": null,
|
1174 |
+
"grid_auto_columns": null,
|
1175 |
+
"grid_auto_flow": null,
|
1176 |
+
"grid_auto_rows": null,
|
1177 |
+
"grid_column": null,
|
1178 |
+
"grid_gap": null,
|
1179 |
+
"grid_row": null,
|
1180 |
+
"grid_template_areas": null,
|
1181 |
+
"grid_template_columns": null,
|
1182 |
+
"grid_template_rows": null,
|
1183 |
+
"height": null,
|
1184 |
+
"justify_content": null,
|
1185 |
+
"justify_items": null,
|
1186 |
+
"left": null,
|
1187 |
+
"margin": null,
|
1188 |
+
"max_height": null,
|
1189 |
+
"max_width": null,
|
1190 |
+
"min_height": null,
|
1191 |
+
"min_width": null,
|
1192 |
+
"object_fit": null,
|
1193 |
+
"object_position": null,
|
1194 |
+
"order": null,
|
1195 |
+
"overflow": null,
|
1196 |
+
"overflow_x": null,
|
1197 |
+
"overflow_y": null,
|
1198 |
+
"padding": null,
|
1199 |
+
"right": null,
|
1200 |
+
"top": null,
|
1201 |
+
"visibility": null,
|
1202 |
+
"width": null
|
1203 |
+
}
|
1204 |
+
},
|
1205 |
+
"9c875952cdd649a5bab87de9bb3f5200": {
|
1206 |
+
"model_module": "@jupyter-widgets/controls",
|
1207 |
+
"model_module_version": "1.5.0",
|
1208 |
+
"model_name": "DescriptionStyleModel",
|
1209 |
+
"state": {
|
1210 |
+
"_model_module": "@jupyter-widgets/controls",
|
1211 |
+
"_model_module_version": "1.5.0",
|
1212 |
+
"_model_name": "DescriptionStyleModel",
|
1213 |
+
"_view_count": null,
|
1214 |
+
"_view_module": "@jupyter-widgets/base",
|
1215 |
+
"_view_module_version": "1.2.0",
|
1216 |
+
"_view_name": "StyleView",
|
1217 |
+
"description_width": ""
|
1218 |
+
}
|
1219 |
+
},
|
1220 |
+
"a1e2c04dc2cb45ea80bec125e3dbf56f": {
|
1221 |
+
"model_module": "@jupyter-widgets/controls",
|
1222 |
+
"model_module_version": "1.5.0",
|
1223 |
+
"model_name": "HTMLModel",
|
1224 |
+
"state": {
|
1225 |
+
"_dom_classes": [],
|
1226 |
+
"_model_module": "@jupyter-widgets/controls",
|
1227 |
+
"_model_module_version": "1.5.0",
|
1228 |
+
"_model_name": "HTMLModel",
|
1229 |
+
"_view_count": null,
|
1230 |
+
"_view_module": "@jupyter-widgets/controls",
|
1231 |
+
"_view_module_version": "1.5.0",
|
1232 |
+
"_view_name": "HTMLView",
|
1233 |
+
"description": "",
|
1234 |
+
"description_tooltip": null,
|
1235 |
+
"layout": "IPY_MODEL_427056895c674c428400bee0f5b43995",
|
1236 |
+
"placeholder": "β",
|
1237 |
+
"style": "IPY_MODEL_04ec68b059df4c628839c3ac29e2ebdd",
|
1238 |
+
"value": "100%"
|
1239 |
+
}
|
1240 |
+
},
|
1241 |
+
"a29f88f174f8499082fbb36a36c47fa4": {
|
1242 |
+
"model_module": "@jupyter-widgets/controls",
|
1243 |
+
"model_module_version": "1.5.0",
|
1244 |
+
"model_name": "HBoxModel",
|
1245 |
+
"state": {
|
1246 |
+
"_dom_classes": [],
|
1247 |
+
"_model_module": "@jupyter-widgets/controls",
|
1248 |
+
"_model_module_version": "1.5.0",
|
1249 |
+
"_model_name": "HBoxModel",
|
1250 |
+
"_view_count": null,
|
1251 |
+
"_view_module": "@jupyter-widgets/controls",
|
1252 |
+
"_view_module_version": "1.5.0",
|
1253 |
+
"_view_name": "HBoxView",
|
1254 |
+
"box_style": "",
|
1255 |
+
"children": [
|
1256 |
+
"IPY_MODEL_d45747150d0b434593a3a7c98399599a",
|
1257 |
+
"IPY_MODEL_ea73f7deb1c643f7b81de7fb7acaaf1b",
|
1258 |
+
"IPY_MODEL_18bc63944343440f837cdff76db004fc"
|
1259 |
+
],
|
1260 |
+
"layout": "IPY_MODEL_efc3bc0c48124ebeb79d245216eaf0fe"
|
1261 |
+
}
|
1262 |
+
},
|
1263 |
+
"a4ae510b4f3845f891a796cf844fc2bb": {
|
1264 |
+
"model_module": "@jupyter-widgets/base",
|
1265 |
+
"model_module_version": "1.2.0",
|
1266 |
+
"model_name": "LayoutModel",
|
1267 |
+
"state": {
|
1268 |
+
"_model_module": "@jupyter-widgets/base",
|
1269 |
+
"_model_module_version": "1.2.0",
|
1270 |
+
"_model_name": "LayoutModel",
|
1271 |
+
"_view_count": null,
|
1272 |
+
"_view_module": "@jupyter-widgets/base",
|
1273 |
+
"_view_module_version": "1.2.0",
|
1274 |
+
"_view_name": "LayoutView",
|
1275 |
+
"align_content": null,
|
1276 |
+
"align_items": null,
|
1277 |
+
"align_self": null,
|
1278 |
+
"border": null,
|
1279 |
+
"bottom": null,
|
1280 |
+
"display": null,
|
1281 |
+
"flex": null,
|
1282 |
+
"flex_flow": null,
|
1283 |
+
"grid_area": null,
|
1284 |
+
"grid_auto_columns": null,
|
1285 |
+
"grid_auto_flow": null,
|
1286 |
+
"grid_auto_rows": null,
|
1287 |
+
"grid_column": null,
|
1288 |
+
"grid_gap": null,
|
1289 |
+
"grid_row": null,
|
1290 |
+
"grid_template_areas": null,
|
1291 |
+
"grid_template_columns": null,
|
1292 |
+
"grid_template_rows": null,
|
1293 |
+
"height": null,
|
1294 |
+
"justify_content": null,
|
1295 |
+
"justify_items": null,
|
1296 |
+
"left": null,
|
1297 |
+
"margin": null,
|
1298 |
+
"max_height": null,
|
1299 |
+
"max_width": null,
|
1300 |
+
"min_height": null,
|
1301 |
+
"min_width": null,
|
1302 |
+
"object_fit": null,
|
1303 |
+
"object_position": null,
|
1304 |
+
"order": null,
|
1305 |
+
"overflow": null,
|
1306 |
+
"overflow_x": null,
|
1307 |
+
"overflow_y": null,
|
1308 |
+
"padding": null,
|
1309 |
+
"right": null,
|
1310 |
+
"top": null,
|
1311 |
+
"visibility": null,
|
1312 |
+
"width": null
|
1313 |
+
}
|
1314 |
+
},
|
1315 |
+
"aa329cb93df44a6da6012c7cc49d7489": {
|
1316 |
+
"model_module": "@jupyter-widgets/base",
|
1317 |
+
"model_module_version": "1.2.0",
|
1318 |
+
"model_name": "LayoutModel",
|
1319 |
+
"state": {
|
1320 |
+
"_model_module": "@jupyter-widgets/base",
|
1321 |
+
"_model_module_version": "1.2.0",
|
1322 |
+
"_model_name": "LayoutModel",
|
1323 |
+
"_view_count": null,
|
1324 |
+
"_view_module": "@jupyter-widgets/base",
|
1325 |
+
"_view_module_version": "1.2.0",
|
1326 |
+
"_view_name": "LayoutView",
|
1327 |
+
"align_content": null,
|
1328 |
+
"align_items": null,
|
1329 |
+
"align_self": null,
|
1330 |
+
"border": null,
|
1331 |
+
"bottom": null,
|
1332 |
+
"display": null,
|
1333 |
+
"flex": null,
|
1334 |
+
"flex_flow": null,
|
1335 |
+
"grid_area": null,
|
1336 |
+
"grid_auto_columns": null,
|
1337 |
+
"grid_auto_flow": null,
|
1338 |
+
"grid_auto_rows": null,
|
1339 |
+
"grid_column": null,
|
1340 |
+
"grid_gap": null,
|
1341 |
+
"grid_row": null,
|
1342 |
+
"grid_template_areas": null,
|
1343 |
+
"grid_template_columns": null,
|
1344 |
+
"grid_template_rows": null,
|
1345 |
+
"height": null,
|
1346 |
+
"justify_content": null,
|
1347 |
+
"justify_items": null,
|
1348 |
+
"left": null,
|
1349 |
+
"margin": null,
|
1350 |
+
"max_height": null,
|
1351 |
+
"max_width": null,
|
1352 |
+
"min_height": null,
|
1353 |
+
"min_width": null,
|
1354 |
+
"object_fit": null,
|
1355 |
+
"object_position": null,
|
1356 |
+
"order": null,
|
1357 |
+
"overflow": null,
|
1358 |
+
"overflow_x": null,
|
1359 |
+
"overflow_y": null,
|
1360 |
+
"padding": null,
|
1361 |
+
"right": null,
|
1362 |
+
"top": null,
|
1363 |
+
"visibility": null,
|
1364 |
+
"width": null
|
1365 |
+
}
|
1366 |
+
},
|
1367 |
+
"b39b6e9131ca4ce3b31e84ceb04e1b83": {
|
1368 |
+
"model_module": "@jupyter-widgets/controls",
|
1369 |
+
"model_module_version": "1.5.0",
|
1370 |
+
"model_name": "ProgressStyleModel",
|
1371 |
+
"state": {
|
1372 |
+
"_model_module": "@jupyter-widgets/controls",
|
1373 |
+
"_model_module_version": "1.5.0",
|
1374 |
+
"_model_name": "ProgressStyleModel",
|
1375 |
+
"_view_count": null,
|
1376 |
+
"_view_module": "@jupyter-widgets/base",
|
1377 |
+
"_view_module_version": "1.2.0",
|
1378 |
+
"_view_name": "StyleView",
|
1379 |
+
"bar_color": null,
|
1380 |
+
"description_width": ""
|
1381 |
+
}
|
1382 |
+
},
|
1383 |
+
"b6d46d40efa14b21814f41531f5a2f41": {
|
1384 |
+
"model_module": "@jupyter-widgets/controls",
|
1385 |
+
"model_module_version": "1.5.0",
|
1386 |
+
"model_name": "FloatProgressModel",
|
1387 |
+
"state": {
|
1388 |
+
"_dom_classes": [],
|
1389 |
+
"_model_module": "@jupyter-widgets/controls",
|
1390 |
+
"_model_module_version": "1.5.0",
|
1391 |
+
"_model_name": "FloatProgressModel",
|
1392 |
+
"_view_count": null,
|
1393 |
+
"_view_module": "@jupyter-widgets/controls",
|
1394 |
+
"_view_module_version": "1.5.0",
|
1395 |
+
"_view_name": "ProgressView",
|
1396 |
+
"bar_style": "success",
|
1397 |
+
"description": "",
|
1398 |
+
"description_tooltip": null,
|
1399 |
+
"layout": "IPY_MODEL_77f1a51099b24831ad8b2be3d2dc833a",
|
1400 |
+
"max": 1,
|
1401 |
+
"min": 0,
|
1402 |
+
"orientation": "horizontal",
|
1403 |
+
"style": "IPY_MODEL_d518f2c2ab6945b78a6d336dad6262bd",
|
1404 |
+
"value": 1
|
1405 |
+
}
|
1406 |
+
},
|
1407 |
+
"c31a747e18df4b4aa4449a30e387448c": {
|
1408 |
+
"model_module": "@jupyter-widgets/base",
|
1409 |
+
"model_module_version": "1.2.0",
|
1410 |
+
"model_name": "LayoutModel",
|
1411 |
+
"state": {
|
1412 |
+
"_model_module": "@jupyter-widgets/base",
|
1413 |
+
"_model_module_version": "1.2.0",
|
1414 |
+
"_model_name": "LayoutModel",
|
1415 |
+
"_view_count": null,
|
1416 |
+
"_view_module": "@jupyter-widgets/base",
|
1417 |
+
"_view_module_version": "1.2.0",
|
1418 |
+
"_view_name": "LayoutView",
|
1419 |
+
"align_content": null,
|
1420 |
+
"align_items": null,
|
1421 |
+
"align_self": null,
|
1422 |
+
"border": null,
|
1423 |
+
"bottom": null,
|
1424 |
+
"display": null,
|
1425 |
+
"flex": null,
|
1426 |
+
"flex_flow": null,
|
1427 |
+
"grid_area": null,
|
1428 |
+
"grid_auto_columns": null,
|
1429 |
+
"grid_auto_flow": null,
|
1430 |
+
"grid_auto_rows": null,
|
1431 |
+
"grid_column": null,
|
1432 |
+
"grid_gap": null,
|
1433 |
+
"grid_row": null,
|
1434 |
+
"grid_template_areas": null,
|
1435 |
+
"grid_template_columns": null,
|
1436 |
+
"grid_template_rows": null,
|
1437 |
+
"height": null,
|
1438 |
+
"justify_content": null,
|
1439 |
+
"justify_items": null,
|
1440 |
+
"left": null,
|
1441 |
+
"margin": null,
|
1442 |
+
"max_height": null,
|
1443 |
+
"max_width": null,
|
1444 |
+
"min_height": null,
|
1445 |
+
"min_width": null,
|
1446 |
+
"object_fit": null,
|
1447 |
+
"object_position": null,
|
1448 |
+
"order": null,
|
1449 |
+
"overflow": null,
|
1450 |
+
"overflow_x": null,
|
1451 |
+
"overflow_y": null,
|
1452 |
+
"padding": null,
|
1453 |
+
"right": null,
|
1454 |
+
"top": null,
|
1455 |
+
"visibility": null,
|
1456 |
+
"width": null
|
1457 |
+
}
|
1458 |
+
},
|
1459 |
+
"c5eed102ef134a4e8ca41713b82ff6a4": {
|
1460 |
+
"model_module": "@jupyter-widgets/base",
|
1461 |
+
"model_module_version": "1.2.0",
|
1462 |
+
"model_name": "LayoutModel",
|
1463 |
+
"state": {
|
1464 |
+
"_model_module": "@jupyter-widgets/base",
|
1465 |
+
"_model_module_version": "1.2.0",
|
1466 |
+
"_model_name": "LayoutModel",
|
1467 |
+
"_view_count": null,
|
1468 |
+
"_view_module": "@jupyter-widgets/base",
|
1469 |
+
"_view_module_version": "1.2.0",
|
1470 |
+
"_view_name": "LayoutView",
|
1471 |
+
"align_content": null,
|
1472 |
+
"align_items": null,
|
1473 |
+
"align_self": null,
|
1474 |
+
"border": null,
|
1475 |
+
"bottom": null,
|
1476 |
+
"display": null,
|
1477 |
+
"flex": null,
|
1478 |
+
"flex_flow": null,
|
1479 |
+
"grid_area": null,
|
1480 |
+
"grid_auto_columns": null,
|
1481 |
+
"grid_auto_flow": null,
|
1482 |
+
"grid_auto_rows": null,
|
1483 |
+
"grid_column": null,
|
1484 |
+
"grid_gap": null,
|
1485 |
+
"grid_row": null,
|
1486 |
+
"grid_template_areas": null,
|
1487 |
+
"grid_template_columns": null,
|
1488 |
+
"grid_template_rows": null,
|
1489 |
+
"height": null,
|
1490 |
+
"justify_content": null,
|
1491 |
+
"justify_items": null,
|
1492 |
+
"left": null,
|
1493 |
+
"margin": null,
|
1494 |
+
"max_height": null,
|
1495 |
+
"max_width": null,
|
1496 |
+
"min_height": null,
|
1497 |
+
"min_width": null,
|
1498 |
+
"object_fit": null,
|
1499 |
+
"object_position": null,
|
1500 |
+
"order": null,
|
1501 |
+
"overflow": null,
|
1502 |
+
"overflow_x": null,
|
1503 |
+
"overflow_y": null,
|
1504 |
+
"padding": null,
|
1505 |
+
"right": null,
|
1506 |
+
"top": null,
|
1507 |
+
"visibility": null,
|
1508 |
+
"width": null
|
1509 |
+
}
|
1510 |
+
},
|
1511 |
+
"d45747150d0b434593a3a7c98399599a": {
|
1512 |
+
"model_module": "@jupyter-widgets/controls",
|
1513 |
+
"model_module_version": "1.5.0",
|
1514 |
+
"model_name": "HTMLModel",
|
1515 |
+
"state": {
|
1516 |
+
"_dom_classes": [],
|
1517 |
+
"_model_module": "@jupyter-widgets/controls",
|
1518 |
+
"_model_module_version": "1.5.0",
|
1519 |
+
"_model_name": "HTMLModel",
|
1520 |
+
"_view_count": null,
|
1521 |
+
"_view_module": "@jupyter-widgets/controls",
|
1522 |
+
"_view_module_version": "1.5.0",
|
1523 |
+
"_view_name": "HTMLView",
|
1524 |
+
"description": "",
|
1525 |
+
"description_tooltip": null,
|
1526 |
+
"layout": "IPY_MODEL_aa329cb93df44a6da6012c7cc49d7489",
|
1527 |
+
"placeholder": "β",
|
1528 |
+
"style": "IPY_MODEL_9c875952cdd649a5bab87de9bb3f5200",
|
1529 |
+
"value": "100%"
|
1530 |
+
}
|
1531 |
+
},
|
1532 |
+
"d518f2c2ab6945b78a6d336dad6262bd": {
|
1533 |
+
"model_module": "@jupyter-widgets/controls",
|
1534 |
+
"model_module_version": "1.5.0",
|
1535 |
+
"model_name": "ProgressStyleModel",
|
1536 |
+
"state": {
|
1537 |
+
"_model_module": "@jupyter-widgets/controls",
|
1538 |
+
"_model_module_version": "1.5.0",
|
1539 |
+
"_model_name": "ProgressStyleModel",
|
1540 |
+
"_view_count": null,
|
1541 |
+
"_view_module": "@jupyter-widgets/base",
|
1542 |
+
"_view_module_version": "1.2.0",
|
1543 |
+
"_view_name": "StyleView",
|
1544 |
+
"bar_color": null,
|
1545 |
+
"description_width": ""
|
1546 |
+
}
|
1547 |
+
},
|
1548 |
+
"d8bf8dc5d6c84140a4e96c9c435b8f17": {
|
1549 |
+
"model_module": "@jupyter-widgets/controls",
|
1550 |
+
"model_module_version": "1.5.0",
|
1551 |
+
"model_name": "HTMLModel",
|
1552 |
+
"state": {
|
1553 |
+
"_dom_classes": [],
|
1554 |
+
"_model_module": "@jupyter-widgets/controls",
|
1555 |
+
"_model_module_version": "1.5.0",
|
1556 |
+
"_model_name": "HTMLModel",
|
1557 |
+
"_view_count": null,
|
1558 |
+
"_view_module": "@jupyter-widgets/controls",
|
1559 |
+
"_view_module_version": "1.5.0",
|
1560 |
+
"_view_name": "HTMLView",
|
1561 |
+
"description": "",
|
1562 |
+
"description_tooltip": null,
|
1563 |
+
"layout": "IPY_MODEL_22ba979142074f1d976e1a905544fd2d",
|
1564 |
+
"placeholder": "β",
|
1565 |
+
"style": "IPY_MODEL_5815ae1348994bfebba4a8e968489a96",
|
1566 |
+
"value": " 1/1 [00:00<00:00, 7.95ba/s]"
|
1567 |
+
}
|
1568 |
+
},
|
1569 |
+
"e6e50da6516847878309fdc5c463edb3": {
|
1570 |
+
"model_module": "@jupyter-widgets/controls",
|
1571 |
+
"model_module_version": "1.5.0",
|
1572 |
+
"model_name": "DescriptionStyleModel",
|
1573 |
+
"state": {
|
1574 |
+
"_model_module": "@jupyter-widgets/controls",
|
1575 |
+
"_model_module_version": "1.5.0",
|
1576 |
+
"_model_name": "DescriptionStyleModel",
|
1577 |
+
"_view_count": null,
|
1578 |
+
"_view_module": "@jupyter-widgets/base",
|
1579 |
+
"_view_module_version": "1.2.0",
|
1580 |
+
"_view_name": "StyleView",
|
1581 |
+
"description_width": ""
|
1582 |
+
}
|
1583 |
+
},
|
1584 |
+
"ea73f7deb1c643f7b81de7fb7acaaf1b": {
|
1585 |
+
"model_module": "@jupyter-widgets/controls",
|
1586 |
+
"model_module_version": "1.5.0",
|
1587 |
+
"model_name": "FloatProgressModel",
|
1588 |
+
"state": {
|
1589 |
+
"_dom_classes": [],
|
1590 |
+
"_model_module": "@jupyter-widgets/controls",
|
1591 |
+
"_model_module_version": "1.5.0",
|
1592 |
+
"_model_name": "FloatProgressModel",
|
1593 |
+
"_view_count": null,
|
1594 |
+
"_view_module": "@jupyter-widgets/controls",
|
1595 |
+
"_view_module_version": "1.5.0",
|
1596 |
+
"_view_name": "ProgressView",
|
1597 |
+
"bar_style": "success",
|
1598 |
+
"description": "",
|
1599 |
+
"description_tooltip": null,
|
1600 |
+
"layout": "IPY_MODEL_c5eed102ef134a4e8ca41713b82ff6a4",
|
1601 |
+
"max": 6962,
|
1602 |
+
"min": 0,
|
1603 |
+
"orientation": "horizontal",
|
1604 |
+
"style": "IPY_MODEL_b39b6e9131ca4ce3b31e84ceb04e1b83",
|
1605 |
+
"value": 6962
|
1606 |
+
}
|
1607 |
+
},
|
1608 |
+
"efc3bc0c48124ebeb79d245216eaf0fe": {
|
1609 |
+
"model_module": "@jupyter-widgets/base",
|
1610 |
+
"model_module_version": "1.2.0",
|
1611 |
+
"model_name": "LayoutModel",
|
1612 |
+
"state": {
|
1613 |
+
"_model_module": "@jupyter-widgets/base",
|
1614 |
+
"_model_module_version": "1.2.0",
|
1615 |
+
"_model_name": "LayoutModel",
|
1616 |
+
"_view_count": null,
|
1617 |
+
"_view_module": "@jupyter-widgets/base",
|
1618 |
+
"_view_module_version": "1.2.0",
|
1619 |
+
"_view_name": "LayoutView",
|
1620 |
+
"align_content": null,
|
1621 |
+
"align_items": null,
|
1622 |
+
"align_self": null,
|
1623 |
+
"border": null,
|
1624 |
+
"bottom": null,
|
1625 |
+
"display": null,
|
1626 |
+
"flex": null,
|
1627 |
+
"flex_flow": null,
|
1628 |
+
"grid_area": null,
|
1629 |
+
"grid_auto_columns": null,
|
1630 |
+
"grid_auto_flow": null,
|
1631 |
+
"grid_auto_rows": null,
|
1632 |
+
"grid_column": null,
|
1633 |
+
"grid_gap": null,
|
1634 |
+
"grid_row": null,
|
1635 |
+
"grid_template_areas": null,
|
1636 |
+
"grid_template_columns": null,
|
1637 |
+
"grid_template_rows": null,
|
1638 |
+
"height": null,
|
1639 |
+
"justify_content": null,
|
1640 |
+
"justify_items": null,
|
1641 |
+
"left": null,
|
1642 |
+
"margin": null,
|
1643 |
+
"max_height": null,
|
1644 |
+
"max_width": null,
|
1645 |
+
"min_height": null,
|
1646 |
+
"min_width": null,
|
1647 |
+
"object_fit": null,
|
1648 |
+
"object_position": null,
|
1649 |
+
"order": null,
|
1650 |
+
"overflow": null,
|
1651 |
+
"overflow_x": null,
|
1652 |
+
"overflow_y": null,
|
1653 |
+
"padding": null,
|
1654 |
+
"right": null,
|
1655 |
+
"top": null,
|
1656 |
+
"visibility": null,
|
1657 |
+
"width": null
|
1658 |
+
}
|
1659 |
+
}
|
1660 |
+
}
|
1661 |
+
}
|
1662 |
+
},
|
1663 |
+
"nbformat": 4,
|
1664 |
+
"nbformat_minor": 4
|
1665 |
+
}
|