from io import BytesIO from typing import Tuple import wave import gradio as gr import numpy as np from pydub.audio_segment import AudioSegment import requests from os.path import exists from stt import Model from datetime import datetime from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch # download model version = "v0.4" storage_url = f"https://github.com/robinhad/voice-recognition-ua/releases/download/{version}" model_name = "uk.tflite" scorer_name = "kenlm.scorer" model_link = f"{storage_url}/{model_name}" scorer_link = f"{storage_url}/{scorer_name}" model = Wav2Vec2ForCTC.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk")#.to("cuda") processor = Wav2Vec2Processor.from_pretrained("robinhad/wav2vec2-xls-r-300m-uk") # TODO: download config.json, pytorch_model.bin, preprocessor_config.json, tokenizer_config.json, vocab.json, added_tokens.json, special_tokens.json def download(url, file_name): if not exists(file_name): print(f"Downloading {file_name}") r = requests.get(url, allow_redirects=True) with open(file_name, 'wb') as file: file.write(r.content) else: print(f"Found {file_name}. Skipping download...") def deepspeech(audio: np.array, use_scorer=False): ds = Model(model_name) if use_scorer: ds.enableExternalScorer("kenlm.scorer") result = ds.stt(audio) return result def wav2vec2(audio: np.array): input_dict = processor(audio, sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): output = model(input_dict.input_values.float()) logits = output.logits pred_ids = torch.argmax(logits, dim=-1)[0] return processor.decode(pred_ids) def inference(audio: Tuple[int, np.array]): print("=============================") print(f"Time: {datetime.utcnow()}.`") output_audio = _convert_audio(audio[1], audio[0]) fin = wave.open(output_audio, 'rb') audio = np.frombuffer(fin.readframes(fin.getnframes()), np.int16) fin.close() transcripts = [] transcripts.append(wav2vec2(audio)) print(f"Wav2Vec2: `{transcripts[-1]}`") transcripts.append(deepspeech(audio, use_scorer=True)) print(f"Deepspeech with LM: `{transcripts[-1]}`") transcripts.append(deepspeech(audio)) print(f"Deepspeech: `{transcripts[-1]}`") return tuple(transcripts) def _convert_audio(audio_data: np.array, sample_rate: int): audio_limit = sample_rate * 60 * 2 # limit audio to 2 minutes max if audio_data.shape[0] > audio_limit: audio_data = audio_data[0:audio_limit] source_audio = BytesIO() source_audio.write(audio_data) source_audio.seek(0) output_audio = BytesIO() wav_file: AudioSegment = AudioSegment.from_raw( source_audio, channels=1, sample_width=audio_data.dtype.itemsize, frame_rate=sample_rate ) wav_file.export(output_audio, "wav", codec="pcm_s16le", parameters=["-ar", "16k"]) output_audio.seek(0) return output_audio with open("README.md") as file: article = file.read() article = article[article.find("---\n", 4) + 5::] iface = gr.Interface( fn=inference, inputs=[ gr.inputs.Audio(type="numpy", label="Аудіо", optional=False), ], outputs=[gr.outputs.Textbox(label="Wav2Vec2"), gr.outputs.Textbox(label="DeepSpeech with LM"), gr.outputs.Textbox(label="DeepSpeech")], title="🇺🇦 Ukrainian Speech-to-Text models", theme="huggingface", description="Україномовний🇺🇦 Speech-to-Text за допомогою Coqui STT", article=article, ) download(model_link, model_name) download(scorer_link, scorer_name) iface.launch()