File size: 8,178 Bytes
d5d7329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import warnings
from logging import getLogger
from typing import Any, Literal, Sequence

import torch
from torch import nn

import so_vits_svc_fork.f0
from so_vits_svc_fork.f0 import f0_to_coarse
from so_vits_svc_fork.modules import commons as commons
from so_vits_svc_fork.modules.decoders.f0 import F0Decoder
from so_vits_svc_fork.modules.decoders.hifigan import NSFHifiGANGenerator
from so_vits_svc_fork.modules.decoders.mb_istft import (
    Multiband_iSTFT_Generator,
    Multistream_iSTFT_Generator,
    iSTFT_Generator,
)
from so_vits_svc_fork.modules.encoders import Encoder, TextEncoder
from so_vits_svc_fork.modules.flows import ResidualCouplingBlock

LOG = getLogger(__name__)


class SynthesizerTrn(nn.Module):
    """
    Synthesizer for Training
    """

    def __init__(
        self,
        spec_channels: int,
        segment_size: int,
        inter_channels: int,
        hidden_channels: int,
        filter_channels: int,
        n_heads: int,
        n_layers: int,
        kernel_size: int,
        p_dropout: int,
        resblock: str,
        resblock_kernel_sizes: Sequence[int],
        resblock_dilation_sizes: Sequence[Sequence[int]],
        upsample_rates: Sequence[int],
        upsample_initial_channel: int,
        upsample_kernel_sizes: Sequence[int],
        gin_channels: int,
        ssl_dim: int,
        n_speakers: int,
        sampling_rate: int = 44100,
        type_: Literal["hifi-gan", "istft", "ms-istft", "mb-istft"] = "hifi-gan",
        gen_istft_n_fft: int = 16,
        gen_istft_hop_size: int = 4,
        subbands: int = 4,
        **kwargs: Any,
    ):
        super().__init__()
        self.spec_channels = spec_channels
        self.inter_channels = inter_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.resblock = resblock
        self.resblock_kernel_sizes = resblock_kernel_sizes
        self.resblock_dilation_sizes = resblock_dilation_sizes
        self.upsample_rates = upsample_rates
        self.upsample_initial_channel = upsample_initial_channel
        self.upsample_kernel_sizes = upsample_kernel_sizes
        self.segment_size = segment_size
        self.gin_channels = gin_channels
        self.ssl_dim = ssl_dim
        self.n_speakers = n_speakers
        self.sampling_rate = sampling_rate
        self.type_ = type_
        self.gen_istft_n_fft = gen_istft_n_fft
        self.gen_istft_hop_size = gen_istft_hop_size
        self.subbands = subbands
        if kwargs:
            warnings.warn(f"Unused arguments: {kwargs}")

        self.emb_g = nn.Embedding(n_speakers, gin_channels)

        if ssl_dim is None:
            self.pre = nn.LazyConv1d(hidden_channels, kernel_size=5, padding=2)
        else:
            self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)

        self.enc_p = TextEncoder(
            inter_channels,
            hidden_channels,
            filter_channels=filter_channels,
            n_heads=n_heads,
            n_layers=n_layers,
            kernel_size=kernel_size,
            p_dropout=p_dropout,
        )

        LOG.info(f"Decoder type: {type_}")
        if type_ == "hifi-gan":
            hps = {
                "sampling_rate": sampling_rate,
                "inter_channels": inter_channels,
                "resblock": resblock,
                "resblock_kernel_sizes": resblock_kernel_sizes,
                "resblock_dilation_sizes": resblock_dilation_sizes,
                "upsample_rates": upsample_rates,
                "upsample_initial_channel": upsample_initial_channel,
                "upsample_kernel_sizes": upsample_kernel_sizes,
                "gin_channels": gin_channels,
            }
            self.dec = NSFHifiGANGenerator(h=hps)
            self.mb = False
        else:
            hps = {
                "initial_channel": inter_channels,
                "resblock": resblock,
                "resblock_kernel_sizes": resblock_kernel_sizes,
                "resblock_dilation_sizes": resblock_dilation_sizes,
                "upsample_rates": upsample_rates,
                "upsample_initial_channel": upsample_initial_channel,
                "upsample_kernel_sizes": upsample_kernel_sizes,
                "gin_channels": gin_channels,
                "gen_istft_n_fft": gen_istft_n_fft,
                "gen_istft_hop_size": gen_istft_hop_size,
                "subbands": subbands,
            }

            # gen_istft_n_fft, gen_istft_hop_size, subbands
            if type_ == "istft":
                del hps["subbands"]
                self.dec = iSTFT_Generator(**hps)
            elif type_ == "ms-istft":
                self.dec = Multistream_iSTFT_Generator(**hps)
            elif type_ == "mb-istft":
                self.dec = Multiband_iSTFT_Generator(**hps)
            else:
                raise ValueError(f"Unknown type: {type_}")
            self.mb = True

        self.enc_q = Encoder(
            spec_channels,
            inter_channels,
            hidden_channels,
            5,
            1,
            16,
            gin_channels=gin_channels,
        )
        self.flow = ResidualCouplingBlock(
            inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
        )
        self.f0_decoder = F0Decoder(
            1,
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            p_dropout,
            spk_channels=gin_channels,
        )
        self.emb_uv = nn.Embedding(2, hidden_channels)

    def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
        g = self.emb_g(g).transpose(1, 2)
        # ssl prenet
        x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(
            c.dtype
        )
        x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)

        # f0 predict
        lf0 = 2595.0 * torch.log10(1.0 + f0.unsqueeze(1) / 700.0) / 500
        norm_lf0 = so_vits_svc_fork.f0.normalize_f0(lf0, x_mask, uv)
        pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)

        # encoder
        z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
        z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)

        # flow
        z_p = self.flow(z, spec_mask, g=g)
        z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(
            z, f0, spec_lengths, self.segment_size
        )

        # MB-iSTFT-VITS
        if self.mb:
            o, o_mb = self.dec(z_slice, g=g)
        # HiFi-GAN
        else:
            o = self.dec(z_slice, g=g, f0=pitch_slice)
            o_mb = None
        return (
            o,
            o_mb,
            ids_slice,
            spec_mask,
            (z, z_p, m_p, logs_p, m_q, logs_q),
            pred_lf0,
            norm_lf0,
            lf0,
        )

    def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
        c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
        g = self.emb_g(g).transpose(1, 2)
        x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(
            c.dtype
        )
        x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)

        if predict_f0:
            lf0 = 2595.0 * torch.log10(1.0 + f0.unsqueeze(1) / 700.0) / 500
            norm_lf0 = so_vits_svc_fork.f0.normalize_f0(
                lf0, x_mask, uv, random_scale=False
            )
            pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
            f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)

        z_p, m_p, logs_p, c_mask = self.enc_p(
            x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale
        )
        z = self.flow(z_p, c_mask, g=g, reverse=True)

        # MB-iSTFT-VITS
        if self.mb:
            o, o_mb = self.dec(z * c_mask, g=g)
        else:
            o = self.dec(z * c_mask, g=g, f0=f0)
        return o