File size: 21,359 Bytes
d5d7329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from __future__ import annotations

import os
import warnings
from logging import getLogger
from multiprocessing import cpu_count
from pathlib import Path
from typing import Any

import lightning.pytorch as pl
import torch
from lightning.pytorch.accelerators import MPSAccelerator, TPUAccelerator
from lightning.pytorch.callbacks import DeviceStatsMonitor
from lightning.pytorch.loggers import TensorBoardLogger
from lightning.pytorch.strategies.ddp import DDPStrategy
from lightning.pytorch.tuner import Tuner
from torch.cuda.amp import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter

import so_vits_svc_fork.f0
import so_vits_svc_fork.modules.commons as commons
import so_vits_svc_fork.utils

from . import utils
from .dataset import TextAudioCollate, TextAudioDataset
from .logger import is_notebook
from .modules.descriminators import MultiPeriodDiscriminator
from .modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from .modules.mel_processing import mel_spectrogram_torch
from .modules.synthesizers import SynthesizerTrn

LOG = getLogger(__name__)
torch.set_float32_matmul_precision("high")


class VCDataModule(pl.LightningDataModule):
    batch_size: int

    def __init__(self, hparams: Any):
        super().__init__()
        self.__hparams = hparams
        self.batch_size = hparams.train.batch_size
        if not isinstance(self.batch_size, int):
            self.batch_size = 1
        self.collate_fn = TextAudioCollate()

        # these should be called in setup(), but we need to calculate check_val_every_n_epoch
        self.train_dataset = TextAudioDataset(self.__hparams, is_validation=False)
        self.val_dataset = TextAudioDataset(self.__hparams, is_validation=True)

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            num_workers=min(cpu_count(), self.__hparams.train.get("num_workers", 8)),
            batch_size=self.batch_size,
            collate_fn=self.collate_fn,
            persistent_workers=True,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=1,
            collate_fn=self.collate_fn,
        )


def train(
    config_path: Path | str, model_path: Path | str, reset_optimizer: bool = False
):
    config_path = Path(config_path)
    model_path = Path(model_path)

    hparams = utils.get_backup_hparams(config_path, model_path)
    utils.ensure_pretrained_model(
        model_path,
        hparams.model.get(
            "pretrained",
            {
                "D_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth",
                "G_0.pth": "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth",
            },
        ),
    )

    datamodule = VCDataModule(hparams)
    strategy = (
        (
            "ddp_find_unused_parameters_true"
            if os.name != "nt"
            else DDPStrategy(find_unused_parameters=True, process_group_backend="gloo")
        )
        if torch.cuda.device_count() > 1
        else "auto"
    )
    LOG.info(f"Using strategy: {strategy}")
    trainer = pl.Trainer(
        logger=TensorBoardLogger(
            model_path, "lightning_logs", hparams.train.get("log_version", 0)
        ),
        # profiler="simple",
        val_check_interval=hparams.train.eval_interval,
        max_epochs=hparams.train.epochs,
        check_val_every_n_epoch=None,
        precision="16-mixed"
        if hparams.train.fp16_run
        else "bf16-mixed"
        if hparams.train.get("bf16_run", False)
        else 32,
        strategy=strategy,
        callbacks=([pl.callbacks.RichProgressBar()] if not is_notebook() else [])
        + [DeviceStatsMonitor()],
        benchmark=True,
        enable_checkpointing=False,
    )
    tuner = Tuner(trainer)
    model = VitsLightning(reset_optimizer=reset_optimizer, **hparams)

    # automatic batch size scaling
    batch_size = hparams.train.batch_size
    batch_split = str(batch_size).split("-")
    batch_size = batch_split[0]
    init_val = 2 if len(batch_split) <= 1 else int(batch_split[1])
    max_trials = 25 if len(batch_split) <= 2 else int(batch_split[2])
    if batch_size == "auto":
        batch_size = "binsearch"
    if batch_size in ["power", "binsearch"]:
        model.tuning = True
        tuner.scale_batch_size(
            model,
            mode=batch_size,
            datamodule=datamodule,
            steps_per_trial=1,
            init_val=init_val,
            max_trials=max_trials,
        )
        model.tuning = False
    else:
        batch_size = int(batch_size)
    # automatic learning rate scaling is not supported for multiple optimizers
    """if hparams.train.learning_rate  == "auto":
    lr_finder = tuner.lr_find(model)
    LOG.info(lr_finder.results)
    fig = lr_finder.plot(suggest=True)
    fig.savefig(model_path / "lr_finder.png")"""

    trainer.fit(model, datamodule=datamodule)


class VitsLightning(pl.LightningModule):
    def __init__(self, reset_optimizer: bool = False, **hparams: Any):
        super().__init__()
        self._temp_epoch = 0  # Add this line to initialize the _temp_epoch attribute
        self.save_hyperparameters("reset_optimizer")
        self.save_hyperparameters(*[k for k in hparams.keys()])
        torch.manual_seed(self.hparams.train.seed)
        self.net_g = SynthesizerTrn(
            self.hparams.data.filter_length // 2 + 1,
            self.hparams.train.segment_size // self.hparams.data.hop_length,
            **self.hparams.model,
        )
        self.net_d = MultiPeriodDiscriminator(self.hparams.model.use_spectral_norm)
        self.automatic_optimization = False
        self.learning_rate = self.hparams.train.learning_rate
        self.optim_g = torch.optim.AdamW(
            self.net_g.parameters(),
            self.learning_rate,
            betas=self.hparams.train.betas,
            eps=self.hparams.train.eps,
        )
        self.optim_d = torch.optim.AdamW(
            self.net_d.parameters(),
            self.learning_rate,
            betas=self.hparams.train.betas,
            eps=self.hparams.train.eps,
        )
        self.scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
            self.optim_g, gamma=self.hparams.train.lr_decay
        )
        self.scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
            self.optim_d, gamma=self.hparams.train.lr_decay
        )
        self.optimizers_count = 2
        self.load(reset_optimizer)
        self.tuning = False

    def on_train_start(self) -> None:
        if not self.tuning:
            self.set_current_epoch(self._temp_epoch)
            total_batch_idx = self._temp_epoch * len(self.trainer.train_dataloader)
            self.set_total_batch_idx(total_batch_idx)
            global_step = total_batch_idx * self.optimizers_count
            self.set_global_step(global_step)

        # check if using tpu or mps
        if isinstance(self.trainer.accelerator, (TPUAccelerator, MPSAccelerator)):
            # patch torch.stft to use cpu
            LOG.warning("Using TPU/MPS. Patching torch.stft to use cpu.")

            def stft(
                input: torch.Tensor,
                n_fft: int,
                hop_length: int | None = None,
                win_length: int | None = None,
                window: torch.Tensor | None = None,
                center: bool = True,
                pad_mode: str = "reflect",
                normalized: bool = False,
                onesided: bool | None = None,
                return_complex: bool | None = None,
            ) -> torch.Tensor:
                device = input.device
                input = input.cpu()
                if window is not None:
                    window = window.cpu()
                return torch.functional.stft(
                    input,
                    n_fft,
                    hop_length,
                    win_length,
                    window,
                    center,
                    pad_mode,
                    normalized,
                    onesided,
                    return_complex,
                ).to(device)

            torch.stft = stft

        elif "bf" in self.trainer.precision:
            LOG.warning("Using bf. Patching torch.stft to use fp32.")

            def stft(
                input: torch.Tensor,
                n_fft: int,
                hop_length: int | None = None,
                win_length: int | None = None,
                window: torch.Tensor | None = None,
                center: bool = True,
                pad_mode: str = "reflect",
                normalized: bool = False,
                onesided: bool | None = None,
                return_complex: bool | None = None,
            ) -> torch.Tensor:
                dtype = input.dtype
                input = input.float()
                if window is not None:
                    window = window.float()
                return torch.functional.stft(
                    input,
                    n_fft,
                    hop_length,
                    win_length,
                    window,
                    center,
                    pad_mode,
                    normalized,
                    onesided,
                    return_complex,
                ).to(dtype)

            torch.stft = stft

    def on_train_end(self) -> None:
        self.save_checkpoints(adjust=0)

    def save_checkpoints(self, adjust=1):
        if self.tuning or self.trainer.sanity_checking:
            return

        # only save checkpoints if we are on the main device
        if (
            hasattr(self.device, "index")
            and self.device.index != None
            and self.device.index != 0
        ):
            return

        # `on_train_end` will be the actual epoch, not a -1, so we have to call it with `adjust = 0`
        current_epoch = self.current_epoch + adjust
        total_batch_idx = self.total_batch_idx - 1 + adjust

        utils.save_checkpoint(
            self.net_g,
            self.optim_g,
            self.learning_rate,
            current_epoch,
            Path(self.hparams.model_dir)
            / f"G_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth",
        )
        utils.save_checkpoint(
            self.net_d,
            self.optim_d,
            self.learning_rate,
            current_epoch,
            Path(self.hparams.model_dir)
            / f"D_{total_batch_idx if self.hparams.train.get('ckpt_name_by_step', False) else current_epoch}.pth",
        )
        keep_ckpts = self.hparams.train.get("keep_ckpts", 0)
        if keep_ckpts > 0:
            utils.clean_checkpoints(
                path_to_models=self.hparams.model_dir,
                n_ckpts_to_keep=keep_ckpts,
                sort_by_time=True,
            )

    def set_current_epoch(self, epoch: int):
        LOG.info(f"Setting current epoch to {epoch}")
        self.trainer.fit_loop.epoch_progress.current.completed = epoch
        self.trainer.fit_loop.epoch_progress.current.processed = epoch
        assert self.current_epoch == epoch, f"{self.current_epoch} != {epoch}"

    def set_global_step(self, global_step: int):
        LOG.info(f"Setting global step to {global_step}")
        self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed = (
            global_step
        )
        self.trainer.fit_loop.epoch_loop.automatic_optimization.optim_progress.optimizer.step.total.completed = (
            global_step
        )
        assert self.global_step == global_step, f"{self.global_step} != {global_step}"

    def set_total_batch_idx(self, total_batch_idx: int):
        LOG.info(f"Setting total batch idx to {total_batch_idx}")
        self.trainer.fit_loop.epoch_loop.batch_progress.total.ready = (
            total_batch_idx + 1
        )
        self.trainer.fit_loop.epoch_loop.batch_progress.total.completed = (
            total_batch_idx
        )
        assert (
            self.total_batch_idx == total_batch_idx + 1
        ), f"{self.total_batch_idx} != {total_batch_idx + 1}"

    @property
    def total_batch_idx(self) -> int:
        return self.trainer.fit_loop.epoch_loop.total_batch_idx + 1

    def load(self, reset_optimizer: bool = False):
        latest_g_path = utils.latest_checkpoint_path(self.hparams.model_dir, "G_*.pth")
        latest_d_path = utils.latest_checkpoint_path(self.hparams.model_dir, "D_*.pth")
        if latest_g_path is not None and latest_d_path is not None:
            try:
                _, _, _, epoch = utils.load_checkpoint(
                    latest_g_path,
                    self.net_g,
                    self.optim_g,
                    reset_optimizer,
                )
                _, _, _, epoch = utils.load_checkpoint(
                    latest_d_path,
                    self.net_d,
                    self.optim_d,
                    reset_optimizer,
                )
                self._temp_epoch = epoch
                self.scheduler_g.last_epoch = epoch - 1
                self.scheduler_d.last_epoch = epoch - 1
            except Exception as e:
                raise RuntimeError("Failed to load checkpoint") from e
        else:
            LOG.warning("No checkpoint found. Start from scratch.")

    def configure_optimizers(self):
        return [self.optim_g, self.optim_d], [self.scheduler_g, self.scheduler_d]

    def log_image_dict(
        self, image_dict: dict[str, Any], dataformats: str = "HWC"
    ) -> None:
        if not isinstance(self.logger, TensorBoardLogger):
            warnings.warn("Image logging is only supported with TensorBoardLogger.")
            return
        writer: SummaryWriter = self.logger.experiment
        for k, v in image_dict.items():
            try:
                writer.add_image(k, v, self.total_batch_idx, dataformats=dataformats)
            except Exception as e:
                warnings.warn(f"Failed to log image {k}: {e}")

    def log_audio_dict(self, audio_dict: dict[str, Any]) -> None:
        if not isinstance(self.logger, TensorBoardLogger):
            warnings.warn("Audio logging is only supported with TensorBoardLogger.")
            return
        writer: SummaryWriter = self.logger.experiment
        for k, v in audio_dict.items():
            writer.add_audio(
                k,
                v.float(),
                self.total_batch_idx,
                sample_rate=self.hparams.data.sampling_rate,
            )

    def log_dict_(self, log_dict: dict[str, Any], **kwargs) -> None:
        if not isinstance(self.logger, TensorBoardLogger):
            warnings.warn("Logging is only supported with TensorBoardLogger.")
            return
        writer: SummaryWriter = self.logger.experiment
        for k, v in log_dict.items():
            writer.add_scalar(k, v, self.total_batch_idx)
        kwargs["logger"] = False
        self.log_dict(log_dict, **kwargs)

    def log_(self, key: str, value: Any, **kwargs) -> None:
        self.log_dict_({key: value}, **kwargs)

    def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> None:
        self.net_g.train()
        self.net_d.train()

        # get optims
        optim_g, optim_d = self.optimizers()

        # Generator
        # train
        self.toggle_optimizer(optim_g)
        c, f0, spec, mel, y, g, lengths, uv = batch
        (
            y_hat,
            y_hat_mb,
            ids_slice,
            z_mask,
            (z, z_p, m_p, logs_p, m_q, logs_q),
            pred_lf0,
            norm_lf0,
            lf0,
        ) = self.net_g(c, f0, uv, spec, g=g, c_lengths=lengths, spec_lengths=lengths)
        y_mel = commons.slice_segments(
            mel,
            ids_slice,
            self.hparams.train.segment_size // self.hparams.data.hop_length,
        )
        y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1), self.hparams)
        y_mel = y_mel[..., : y_hat_mel.shape[-1]]
        y = commons.slice_segments(
            y,
            ids_slice * self.hparams.data.hop_length,
            self.hparams.train.segment_size,
        )
        y = y[..., : y_hat.shape[-1]]

        # generator loss
        y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.net_d(y, y_hat)

        with autocast(enabled=False):
            loss_mel = F.l1_loss(y_mel, y_hat_mel) * self.hparams.train.c_mel
            loss_kl = (
                kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * self.hparams.train.c_kl
            )
            loss_fm = feature_loss(fmap_r, fmap_g)
            loss_gen, losses_gen = generator_loss(y_d_hat_g)
            loss_lf0 = F.mse_loss(pred_lf0, lf0)
            loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0

            # MB-iSTFT-VITS
            loss_subband = torch.tensor(0.0)
            if self.hparams.model.get("type_") == "mb-istft":
                from .modules.decoders.mb_istft import PQMF, subband_stft_loss

                y_mb = PQMF(y.device, self.hparams.model.subbands).analysis(y)
                loss_subband = subband_stft_loss(self.hparams, y_mb, y_hat_mb)
            loss_gen_all += loss_subband

        # log loss
        self.log_("lr", self.optim_g.param_groups[0]["lr"])
        self.log_dict_(
            {
                "loss/g/total": loss_gen_all,
                "loss/g/fm": loss_fm,
                "loss/g/mel": loss_mel,
                "loss/g/kl": loss_kl,
                "loss/g/lf0": loss_lf0,
            },
            prog_bar=True,
        )
        if self.hparams.model.get("type_") == "mb-istft":
            self.log_("loss/g/subband", loss_subband)
        if self.total_batch_idx % self.hparams.train.log_interval == 0:
            self.log_image_dict(
                {
                    "slice/mel_org": utils.plot_spectrogram_to_numpy(
                        y_mel[0].data.cpu().float().numpy()
                    ),
                    "slice/mel_gen": utils.plot_spectrogram_to_numpy(
                        y_hat_mel[0].data.cpu().float().numpy()
                    ),
                    "all/mel": utils.plot_spectrogram_to_numpy(
                        mel[0].data.cpu().float().numpy()
                    ),
                    "all/lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
                        lf0[0, 0, :].cpu().float().numpy(),
                        pred_lf0[0, 0, :].detach().cpu().float().numpy(),
                    ),
                    "all/norm_lf0": so_vits_svc_fork.utils.plot_data_to_numpy(
                        lf0[0, 0, :].cpu().float().numpy(),
                        norm_lf0[0, 0, :].detach().cpu().float().numpy(),
                    ),
                }
            )

        accumulate_grad_batches = self.hparams.train.get("accumulate_grad_batches", 1)
        should_update = (
            batch_idx + 1
        ) % accumulate_grad_batches == 0 or self.trainer.is_last_batch
        # optimizer
        self.manual_backward(loss_gen_all / accumulate_grad_batches)
        if should_update:
            self.log_(
                "grad_norm_g", commons.clip_grad_value_(self.net_g.parameters(), None)
            )
            optim_g.step()
            optim_g.zero_grad()
        self.untoggle_optimizer(optim_g)

        # Discriminator
        # train
        self.toggle_optimizer(optim_d)
        y_d_hat_r, y_d_hat_g, _, _ = self.net_d(y, y_hat.detach())

        # discriminator loss
        with autocast(enabled=False):
            loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
                y_d_hat_r, y_d_hat_g
            )
            loss_disc_all = loss_disc

        # log loss
        self.log_("loss/d/total", loss_disc_all, prog_bar=True)

        # optimizer
        self.manual_backward(loss_disc_all / accumulate_grad_batches)
        if should_update:
            self.log_(
                "grad_norm_d", commons.clip_grad_value_(self.net_d.parameters(), None)
            )
            optim_d.step()
            optim_d.zero_grad()
        self.untoggle_optimizer(optim_d)

        # end of epoch
        if self.trainer.is_last_batch:
            self.scheduler_g.step()
            self.scheduler_d.step()

    def validation_step(self, batch, batch_idx):
        # avoid logging with wrong global step
        if self.global_step == 0:
            return
        with torch.no_grad():
            self.net_g.eval()
            c, f0, _, mel, y, g, _, uv = batch
            y_hat = self.net_g.infer(c, f0, uv, g=g)
            y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1).float(), self.hparams)
            self.log_audio_dict(
                {f"gen/audio_{batch_idx}": y_hat[0], f"gt/audio_{batch_idx}": y[0]}
            )
            self.log_image_dict(
                {
                    "gen/mel": utils.plot_spectrogram_to_numpy(
                        y_hat_mel[0].cpu().float().numpy()
                    ),
                    "gt/mel": utils.plot_spectrogram_to_numpy(
                        mel[0].cpu().float().numpy()
                    ),
                }
            )

    def on_validation_end(self) -> None:
        self.save_checkpoints()