Spaces:
Runtime error
Runtime error
File size: 30,617 Bytes
d5d7329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
from __future__ import annotations
import json
import multiprocessing
import os
from copy import copy
from logging import getLogger
from pathlib import Path
import PySimpleGUI as sg
import sounddevice as sd
import soundfile as sf
import torch
from pebble import ProcessFuture, ProcessPool
from . import __version__
from .utils import get_optimal_device
GUI_DEFAULT_PRESETS_PATH = Path(__file__).parent / "default_gui_presets.json"
GUI_PRESETS_PATH = Path("./user_gui_presets.json").absolute()
LOG = getLogger(__name__)
def play_audio(path: Path | str):
if isinstance(path, Path):
path = path.as_posix()
data, sr = sf.read(path)
sd.play(data, sr)
def load_presets() -> dict:
defaults = json.loads(GUI_DEFAULT_PRESETS_PATH.read_text("utf-8"))
users = (
json.loads(GUI_PRESETS_PATH.read_text("utf-8"))
if GUI_PRESETS_PATH.exists()
else {}
)
# prioriy: defaults > users
# order: defaults -> users
return {**defaults, **users, **defaults}
def add_preset(name: str, preset: dict) -> dict:
presets = load_presets()
presets[name] = preset
with GUI_PRESETS_PATH.open("w") as f:
json.dump(presets, f, indent=2)
return load_presets()
def delete_preset(name: str) -> dict:
presets = load_presets()
if name in presets:
del presets[name]
else:
LOG.warning(f"Cannot delete preset {name} because it does not exist.")
with GUI_PRESETS_PATH.open("w") as f:
json.dump(presets, f, indent=2)
return load_presets()
def get_output_path(input_path: Path) -> Path:
# Default output path
output_path = input_path.parent / f"{input_path.stem}.out{input_path.suffix}"
# Increment file number in path if output file already exists
file_num = 1
while output_path.exists():
output_path = (
input_path.parent / f"{input_path.stem}.out_{file_num}{input_path.suffix}"
)
file_num += 1
return output_path
def get_supported_file_types() -> tuple[tuple[str, str], ...]:
res = tuple(
[
(extension, f".{extension.lower()}")
for extension in sf.available_formats().keys()
]
)
# Sort by popularity
common_file_types = ["WAV", "MP3", "FLAC", "OGG", "M4A", "WMA"]
res = sorted(
res,
key=lambda x: common_file_types.index(x[0])
if x[0] in common_file_types
else len(common_file_types),
)
return res
def get_supported_file_types_concat() -> tuple[tuple[str, str], ...]:
return (("Audio", " ".join(sf.available_formats().keys())),)
def validate_output_file_type(output_path: Path) -> bool:
supported_file_types = sorted(
[f".{extension.lower()}" for extension in sf.available_formats().keys()]
)
if not output_path.suffix:
sg.popup_ok(
"Error: Output path missing file type extension, enter "
+ "one of the following manually:\n\n"
+ "\n".join(supported_file_types)
)
return False
if output_path.suffix.lower() not in supported_file_types:
sg.popup_ok(
f"Error: {output_path.suffix.lower()} is not a supported "
+ "extension; use one of the following:\n\n"
+ "\n".join(supported_file_types)
)
return False
return True
def get_devices(
update: bool = True,
) -> tuple[list[str], list[str], list[int], list[int]]:
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [d["index"] for d in devices if d["max_input_channels"] > 0]
output_devices_indices = [
d["index"] for d in devices if d["max_output_channels"] > 0
]
return input_devices, output_devices, input_devices_indices, output_devices_indices
def after_inference(window: sg.Window, path: Path, auto_play: bool, output_path: Path):
try:
LOG.info(f"Finished inference for {path.stem}{path.suffix}")
window["infer"].update(disabled=False)
if auto_play:
play_audio(output_path)
except Exception as e:
LOG.exception(e)
def main():
LOG.info(f"version: {__version__}")
# sg.theme("Dark")
sg.theme_add_new(
"Very Dark",
{
"BACKGROUND": "#111111",
"TEXT": "#FFFFFF",
"INPUT": "#444444",
"TEXT_INPUT": "#FFFFFF",
"SCROLL": "#333333",
"BUTTON": ("white", "#112233"),
"PROGRESS": ("#111111", "#333333"),
"BORDER": 2,
"SLIDER_DEPTH": 2,
"PROGRESS_DEPTH": 2,
},
)
sg.theme("Very Dark")
model_candidates = list(sorted(Path("./logs/44k/").glob("G_*.pth")))
frame_contents = {
"Paths": [
[
sg.Text("Model path"),
sg.Push(),
sg.InputText(
key="model_path",
default_text=model_candidates[-1].absolute().as_posix()
if model_candidates
else "",
enable_events=True,
),
sg.FileBrowse(
initial_folder=Path("./logs/44k/").absolute
if Path("./logs/44k/").exists()
else Path(".").absolute().as_posix(),
key="model_path_browse",
file_types=(
("PyTorch", "G_*.pth G_*.pt"),
("Pytorch", "*.pth *.pt"),
),
),
],
[
sg.Text("Config path"),
sg.Push(),
sg.InputText(
key="config_path",
default_text=Path("./configs/44k/config.json").absolute().as_posix()
if Path("./configs/44k/config.json").exists()
else "",
enable_events=True,
),
sg.FileBrowse(
initial_folder=Path("./configs/44k/").as_posix()
if Path("./configs/44k/").exists()
else Path(".").absolute().as_posix(),
key="config_path_browse",
file_types=(("JSON", "*.json"),),
),
],
[
sg.Text("Cluster model path (Optional)"),
sg.Push(),
sg.InputText(
key="cluster_model_path",
default_text=Path("./logs/44k/kmeans.pt").absolute().as_posix()
if Path("./logs/44k/kmeans.pt").exists()
else "",
enable_events=True,
),
sg.FileBrowse(
initial_folder="./logs/44k/"
if Path("./logs/44k/").exists()
else ".",
key="cluster_model_path_browse",
file_types=(("PyTorch", "*.pt"), ("Pickle", "*.pt *.pth *.pkl")),
),
],
],
"Common": [
[
sg.Text("Speaker"),
sg.Push(),
sg.Combo(values=[], key="speaker", size=(20, 1)),
],
[
sg.Text("Silence threshold"),
sg.Push(),
sg.Slider(
range=(-60.0, 0),
orientation="h",
key="silence_threshold",
resolution=0.1,
),
],
[
sg.Text(
"Pitch (12 = 1 octave)\n"
"ADJUST THIS based on your voice\n"
"when Auto predict F0 is turned off.",
size=(None, 4),
),
sg.Push(),
sg.Slider(
range=(-36, 36),
orientation="h",
key="transpose",
tick_interval=12,
),
],
[
sg.Checkbox(
key="auto_predict_f0",
text="Auto predict F0 (Pitch may become unstable when turned on in real-time inference.)",
)
],
[
sg.Text("F0 prediction method"),
sg.Push(),
sg.Combo(
["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"],
key="f0_method",
),
],
[
sg.Text("Cluster infer ratio"),
sg.Push(),
sg.Slider(
range=(0, 1.0),
orientation="h",
key="cluster_infer_ratio",
resolution=0.01,
),
],
[
sg.Text("Noise scale"),
sg.Push(),
sg.Slider(
range=(0.0, 1.0),
orientation="h",
key="noise_scale",
resolution=0.01,
),
],
[
sg.Text("Pad seconds"),
sg.Push(),
sg.Slider(
range=(0.0, 1.0),
orientation="h",
key="pad_seconds",
resolution=0.01,
),
],
[
sg.Text("Chunk seconds"),
sg.Push(),
sg.Slider(
range=(0.0, 3.0),
orientation="h",
key="chunk_seconds",
resolution=0.01,
),
],
[
sg.Text("Max chunk seconds (set lower if Out Of Memory, 0 to disable)"),
sg.Push(),
sg.Slider(
range=(0.0, 240.0),
orientation="h",
key="max_chunk_seconds",
resolution=1.0,
),
],
[
sg.Checkbox(
key="absolute_thresh",
text="Absolute threshold (ignored (True) in realtime inference)",
)
],
],
"File": [
[
sg.Text("Input audio path"),
sg.Push(),
sg.InputText(key="input_path", enable_events=True),
sg.FileBrowse(
initial_folder=".",
key="input_path_browse",
file_types=get_supported_file_types_concat(),
),
sg.FolderBrowse(
button_text="Browse(Folder)",
initial_folder=".",
key="input_path_folder_browse",
target="input_path",
),
sg.Button("Play", key="play_input"),
],
[
sg.Text("Output audio path"),
sg.Push(),
sg.InputText(key="output_path"),
sg.FileSaveAs(
initial_folder=".",
key="output_path_browse",
file_types=get_supported_file_types(),
),
],
[sg.Checkbox(key="auto_play", text="Auto play", default=True)],
],
"Realtime": [
[
sg.Text("Crossfade seconds"),
sg.Push(),
sg.Slider(
range=(0, 0.6),
orientation="h",
key="crossfade_seconds",
resolution=0.001,
),
],
[
sg.Text(
"Block seconds", # \n(big -> more robust, slower, (the same) latency)"
tooltip="Big -> more robust, slower, (the same) latency",
),
sg.Push(),
sg.Slider(
range=(0, 3.0),
orientation="h",
key="block_seconds",
resolution=0.001,
),
],
[
sg.Text(
"Additional Infer seconds (before)", # \n(big -> more robust, slower)"
tooltip="Big -> more robust, slower, additional latency",
),
sg.Push(),
sg.Slider(
range=(0, 2.0),
orientation="h",
key="additional_infer_before_seconds",
resolution=0.001,
),
],
[
sg.Text(
"Additional Infer seconds (after)", # \n(big -> more robust, slower, additional latency)"
tooltip="Big -> more robust, slower, additional latency",
),
sg.Push(),
sg.Slider(
range=(0, 2.0),
orientation="h",
key="additional_infer_after_seconds",
resolution=0.001,
),
],
[
sg.Text("Realtime algorithm"),
sg.Push(),
sg.Combo(
["2 (Divide by speech)", "1 (Divide constantly)"],
default_value="1 (Divide constantly)",
key="realtime_algorithm",
),
],
[
sg.Text("Input device"),
sg.Push(),
sg.Combo(
key="input_device",
values=[],
size=(60, 1),
),
],
[
sg.Text("Output device"),
sg.Push(),
sg.Combo(
key="output_device",
values=[],
size=(60, 1),
),
],
[
sg.Checkbox(
"Passthrough original audio (for latency check)",
key="passthrough_original",
default=False,
),
sg.Push(),
sg.Button("Refresh devices", key="refresh_devices"),
],
[
sg.Frame(
"Notes",
[
[
sg.Text(
"In Realtime Inference:\n"
" - Setting F0 prediction method to 'crepe` may cause performance degradation.\n"
" - Auto Predict F0 must be turned off.\n"
"If the audio sounds mumbly and choppy:\n"
" Case: The inference has not been made in time (Increase Block seconds)\n"
" Case: Mic input is low (Decrease Silence threshold)\n"
)
]
],
),
],
],
"Presets": [
[
sg.Text("Presets"),
sg.Push(),
sg.Combo(
key="presets",
values=list(load_presets().keys()),
size=(40, 1),
enable_events=True,
),
sg.Button("Delete preset", key="delete_preset"),
],
[
sg.Text("Preset name"),
sg.Stretch(),
sg.InputText(key="preset_name", size=(26, 1)),
sg.Button("Add current settings as a preset", key="add_preset"),
],
],
}
# frames
frames = {}
for name, items in frame_contents.items():
frame = sg.Frame(name, items)
frame.expand_x = True
frames[name] = [frame]
bottoms = [
[
sg.Checkbox(
key="use_gpu",
default=get_optimal_device() != torch.device("cpu"),
text="Use GPU"
+ (
" (not available; if your device has GPU, make sure you installed PyTorch with CUDA support)"
if get_optimal_device() == torch.device("cpu")
else ""
),
disabled=get_optimal_device() == torch.device("cpu"),
)
],
[
sg.Button("Infer", key="infer"),
sg.Button("(Re)Start Voice Changer", key="start_vc"),
sg.Button("Stop Voice Changer", key="stop_vc"),
sg.Push(),
# sg.Button("ONNX Export", key="onnx_export"),
],
]
column1 = sg.Column(
[
frames["Paths"],
frames["Common"],
],
vertical_alignment="top",
)
column2 = sg.Column(
[
frames["File"],
frames["Realtime"],
frames["Presets"],
]
+ bottoms
)
# columns
layout = [[column1, column2]]
# get screen size
screen_width, screen_height = sg.Window.get_screen_size()
if screen_height < 720:
layout = [
[
sg.Column(
layout,
vertical_alignment="top",
scrollable=False,
expand_x=True,
expand_y=True,
vertical_scroll_only=True,
key="main_column",
)
]
]
window = sg.Window(
f"{__name__.split('.')[0].replace('_', '-')} v{__version__}",
layout,
grab_anywhere=True,
finalize=True,
scaling=1,
font=("Yu Gothic UI", 11) if os.name == "nt" else None,
# resizable=True,
# size=(1280, 720),
# Below disables taskbar, which may be not useful for some users
# use_custom_titlebar=True, no_titlebar=False
# Keep on top
# keep_on_top=True
)
# event, values = window.read(timeout=0.01)
# window["main_column"].Scrollable = True
# make slider height smaller
try:
for v in window.element_list():
if isinstance(v, sg.Slider):
v.Widget.configure(sliderrelief="flat", width=10, sliderlength=20)
except Exception as e:
LOG.exception(e)
# for n in ["input_device", "output_device"]:
# window[n].Widget.configure(justify="right")
event, values = window.read(timeout=0.01)
def update_speaker() -> None:
from . import utils
config_path = Path(values["config_path"])
if config_path.exists() and config_path.is_file():
hp = utils.get_hparams(values["config_path"])
LOG.debug(f"Loaded config from {values['config_path']}")
window["speaker"].update(
values=list(hp.__dict__["spk"].keys()), set_to_index=0
)
def update_devices() -> None:
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = get_devices()
input_device_indices_reversed = {
v: k for k, v in enumerate(input_device_indices)
}
output_device_indices_reversed = {
v: k for k, v in enumerate(output_device_indices)
}
window["input_device"].update(
values=input_devices, value=values["input_device"]
)
window["output_device"].update(
values=output_devices, value=values["output_device"]
)
input_default, output_default = sd.default.device
if values["input_device"] not in input_devices:
window["input_device"].update(
values=input_devices,
set_to_index=input_device_indices_reversed.get(input_default, 0),
)
if values["output_device"] not in output_devices:
window["output_device"].update(
values=output_devices,
set_to_index=output_device_indices_reversed.get(output_default, 0),
)
PRESET_KEYS = [
key
for key in values.keys()
if not any(exclude in key for exclude in ["preset", "browse"])
]
def apply_preset(name: str) -> None:
for key, value in load_presets()[name].items():
if key in PRESET_KEYS:
window[key].update(value)
values[key] = value
default_name = list(load_presets().keys())[0]
apply_preset(default_name)
window["presets"].update(default_name)
del default_name
update_speaker()
update_devices()
# with ProcessPool(max_workers=1) as pool:
# to support Linux
with ProcessPool(
max_workers=min(2, multiprocessing.cpu_count()),
context=multiprocessing.get_context("spawn"),
) as pool:
future: None | ProcessFuture = None
infer_futures: set[ProcessFuture] = set()
while True:
event, values = window.read(200)
if event == sg.WIN_CLOSED:
break
if not event == sg.EVENT_TIMEOUT:
LOG.info(f"Event {event}, values {values}")
if event.endswith("_path"):
for name in window.AllKeysDict:
if str(name).endswith("_browse"):
browser = window[name]
if isinstance(browser, sg.Button):
LOG.info(
f"Updating browser {browser} to {Path(values[event]).parent}"
)
browser.InitialFolder = Path(values[event]).parent
browser.update()
else:
LOG.warning(f"Browser {browser} is not a FileBrowse")
window["transpose"].update(
disabled=values["auto_predict_f0"],
visible=not values["auto_predict_f0"],
)
input_path = Path(values["input_path"])
output_path = Path(values["output_path"])
if event == "add_preset":
presets = add_preset(
values["preset_name"], {key: values[key] for key in PRESET_KEYS}
)
window["presets"].update(values=list(presets.keys()))
elif event == "delete_preset":
presets = delete_preset(values["presets"])
window["presets"].update(values=list(presets.keys()))
elif event == "presets":
apply_preset(values["presets"])
update_speaker()
elif event == "refresh_devices":
update_devices()
elif event == "config_path":
update_speaker()
elif event == "input_path":
# Don't change the output path if it's already set
# if values["output_path"]:
# continue
# Set a sensible default output path
window.Element("output_path").Update(str(get_output_path(input_path)))
elif event == "infer":
if "Default VC" in values["presets"]:
window["presets"].update(
set_to_index=list(load_presets().keys()).index("Default File")
)
apply_preset("Default File")
if values["input_path"] == "":
LOG.warning("Input path is empty.")
continue
if not input_path.exists():
LOG.warning(f"Input path {input_path} does not exist.")
continue
# if not validate_output_file_type(output_path):
# continue
try:
from so_vits_svc_fork.inference.main import infer
LOG.info("Starting inference...")
window["infer"].update(disabled=True)
infer_future = pool.schedule(
infer,
kwargs=dict(
# paths
model_path=Path(values["model_path"]),
output_path=output_path,
input_path=input_path,
config_path=Path(values["config_path"]),
recursive=True,
# svc config
speaker=values["speaker"],
cluster_model_path=Path(values["cluster_model_path"])
if values["cluster_model_path"]
else None,
transpose=values["transpose"],
auto_predict_f0=values["auto_predict_f0"],
cluster_infer_ratio=values["cluster_infer_ratio"],
noise_scale=values["noise_scale"],
f0_method=values["f0_method"],
# slice config
db_thresh=values["silence_threshold"],
pad_seconds=values["pad_seconds"],
chunk_seconds=values["chunk_seconds"],
absolute_thresh=values["absolute_thresh"],
max_chunk_seconds=values["max_chunk_seconds"],
device="cpu"
if not values["use_gpu"]
else get_optimal_device(),
),
)
infer_future.add_done_callback(
lambda _future: after_inference(
window, input_path, values["auto_play"], output_path
)
)
infer_futures.add(infer_future)
except Exception as e:
LOG.exception(e)
elif event == "play_input":
if Path(values["input_path"]).exists():
pool.schedule(play_audio, args=[Path(values["input_path"])])
elif event == "start_vc":
_, _, input_device_indices, output_device_indices = get_devices(
update=False
)
from so_vits_svc_fork.inference.main import realtime
if future:
LOG.info("Canceling previous task")
future.cancel()
future = pool.schedule(
realtime,
kwargs=dict(
# paths
model_path=Path(values["model_path"]),
config_path=Path(values["config_path"]),
speaker=values["speaker"],
# svc config
cluster_model_path=Path(values["cluster_model_path"])
if values["cluster_model_path"]
else None,
transpose=values["transpose"],
auto_predict_f0=values["auto_predict_f0"],
cluster_infer_ratio=values["cluster_infer_ratio"],
noise_scale=values["noise_scale"],
f0_method=values["f0_method"],
# slice config
db_thresh=values["silence_threshold"],
pad_seconds=values["pad_seconds"],
chunk_seconds=values["chunk_seconds"],
# realtime config
crossfade_seconds=values["crossfade_seconds"],
additional_infer_before_seconds=values[
"additional_infer_before_seconds"
],
additional_infer_after_seconds=values[
"additional_infer_after_seconds"
],
block_seconds=values["block_seconds"],
version=int(values["realtime_algorithm"][0]),
input_device=input_device_indices[
window["input_device"].widget.current()
],
output_device=output_device_indices[
window["output_device"].widget.current()
],
device=get_optimal_device() if values["use_gpu"] else "cpu",
passthrough_original=values["passthrough_original"],
),
)
elif event == "stop_vc":
if future:
future.cancel()
future = None
elif event == "onnx_export":
try:
raise NotImplementedError("ONNX export is not implemented yet.")
from so_vits_svc_fork.modules.onnx._export import onnx_export
onnx_export(
input_path=Path(values["model_path"]),
output_path=Path(values["model_path"]).with_suffix(".onnx"),
config_path=Path(values["config_path"]),
device="cpu",
)
except Exception as e:
LOG.exception(e)
if future is not None and future.done():
try:
future.result()
except Exception as e:
LOG.error("Error in realtime: ")
LOG.exception(e)
future = None
for future in copy(infer_futures):
if future.done():
try:
future.result()
except Exception as e:
LOG.error("Error in inference: ")
LOG.exception(e)
infer_futures.remove(future)
if future:
future.cancel()
window.close()
|