Spaces:
Runtime error
Runtime error
File size: 8,379 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random
import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner,
Fp16OptimizerHook, OptimizerHook, build_runner,
get_dist_info)
from mmdet.core import DistEvalHook, EvalHook, build_optimizer
from mmdet.datasets import (build_dataloader, build_dataset,
replace_ImageToTensor)
from mmdet.utils import (build_ddp, build_dp, compat_cfg,
find_latest_checkpoint, get_root_logger)
def init_random_seed(seed=None, device='cuda'):
"""Initialize random seed.
If the seed is not set, the seed will be automatically randomized,
and then broadcast to all processes to prevent some potential bugs.
Args:
seed (int, Optional): The seed. Default to None.
device (str): The device where the seed will be put on.
Default to 'cuda'.
Returns:
int: Seed to be used.
"""
if seed is not None:
return seed
# Make sure all ranks share the same random seed to prevent
# some potential bugs. Please refer to
# https://github.com/open-mmlab/mmdetection/issues/6339
rank, world_size = get_dist_info()
seed = np.random.randint(2**31)
if world_size == 1:
return seed
if rank == 0:
random_num = torch.tensor(seed, dtype=torch.int32, device=device)
else:
random_num = torch.tensor(0, dtype=torch.int32, device=device)
dist.broadcast(random_num, src=0)
return random_num.item()
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def auto_scale_lr(cfg, distributed, logger):
"""Automatically scaling LR according to GPU number and sample per GPU.
Args:
cfg (config): Training config.
distributed (bool): Using distributed or not.
logger (logging.Logger): Logger.
"""
# Get flag from config
if ('auto_scale_lr' not in cfg) or \
(not cfg.auto_scale_lr.get('enable', False)):
logger.info('Automatic scaling of learning rate (LR)'
' has been disabled.')
return
# Get base batch size from config
base_batch_size = cfg.auto_scale_lr.get('base_batch_size', None)
if base_batch_size is None:
return
# Get gpu number
if distributed:
_, world_size = get_dist_info()
num_gpus = len(range(world_size))
else:
num_gpus = len(cfg.gpu_ids)
# calculate the batch size
samples_per_gpu = cfg.data.train_dataloader.samples_per_gpu
batch_size = num_gpus * samples_per_gpu
logger.info(f'Training with {num_gpus} GPU(s) with {samples_per_gpu} '
f'samples per GPU. The total batch size is {batch_size}.')
if batch_size != base_batch_size:
# scale LR with
# [linear scaling rule](https://arxiv.org/abs/1706.02677)
scaled_lr = (batch_size / base_batch_size) * cfg.optimizer.lr
logger.info('LR has been automatically scaled '
f'from {cfg.optimizer.lr} to {scaled_lr}')
cfg.optimizer.lr = scaled_lr
else:
logger.info('The batch size match the '
f'base batch size: {base_batch_size}, '
f'will not scaling the LR ({cfg.optimizer.lr}).')
def train_detector(model,
dataset,
cfg,
distributed=False,
validate=False,
timestamp=None,
meta=None):
cfg = compat_cfg(cfg)
logger = get_root_logger(log_level=cfg.log_level)
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
runner_type = 'EpochBasedRunner' if 'runner' not in cfg else cfg.runner[
'type']
train_dataloader_default_args = dict(
samples_per_gpu=2,
workers_per_gpu=2,
# `num_gpus` will be ignored if distributed
num_gpus=len(cfg.gpu_ids),
dist=distributed,
seed=cfg.seed,
runner_type=runner_type,
persistent_workers=False)
train_loader_cfg = {
**train_dataloader_default_args,
**cfg.data.get('train_dataloader', {})
}
data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]
# put model on gpus
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = build_ddp(
model,
cfg.device,
device_ids=[int(os.environ['LOCAL_RANK'])],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids)
# build optimizer
auto_scale_lr(cfg, distributed, logger)
optimizer = build_optimizer(model, cfg.optimizer)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
optimizer=optimizer,
work_dir=cfg.work_dir,
logger=logger,
meta=meta))
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is None and cfg.get('device', None) == 'npu':
fp16_cfg = dict(loss_scale='dynamic')
if fp16_cfg is not None:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed)
elif distributed and 'type' not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get('momentum_config', None),
custom_hooks_config=cfg.get('custom_hooks', None))
if distributed:
if isinstance(runner, EpochBasedRunner):
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
val_dataloader_default_args = dict(
samples_per_gpu=1,
workers_per_gpu=2,
dist=distributed,
shuffle=False,
persistent_workers=False)
val_dataloader_args = {
**val_dataloader_default_args,
**cfg.data.get('val_dataloader', {})
}
# Support batch_size > 1 in validation
if val_dataloader_args['samples_per_gpu'] > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.val.pipeline = replace_ImageToTensor(
cfg.data.val.pipeline)
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(val_dataset, **val_dataloader_args)
eval_cfg = cfg.get('evaluation', {})
eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
eval_hook = DistEvalHook if distributed else EvalHook
# In this PR (https://github.com/open-mmlab/mmcv/pull/1193), the
# priority of IterTimerHook has been modified from 'NORMAL' to 'LOW'.
runner.register_hook(
eval_hook(val_dataloader, **eval_cfg), priority='LOW')
resume_from = None
if cfg.resume_from is None and cfg.get('auto_resume'):
resume_from = find_latest_checkpoint(cfg.work_dir)
if resume_from is not None:
cfg.resume_from = resume_from
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, cfg.workflow)
|