File size: 10,174 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch

from ..builder import BBOX_ASSIGNERS
from ..iou_calculators import build_iou_calculator
from .assign_result import AssignResult
from .base_assigner import BaseAssigner


@BBOX_ASSIGNERS.register_module()
class ATSSAssigner(BaseAssigner):
    """Assign a corresponding gt bbox or background to each bbox.

    Each proposals will be assigned with `0` or a positive integer
    indicating the ground truth index.

    - 0: negative sample, no assigned gt
    - positive integer: positive sample, index (1-based) of assigned gt

    If ``alpha`` is not None, it means that the dynamic cost
    ATSSAssigner is adopted, which is currently only used in the DDOD.

    Args:
        topk (float): number of bbox selected in each level
    """

    def __init__(self,
                 topk,
                 alpha=None,
                 iou_calculator=dict(type='BboxOverlaps2D'),
                 ignore_iof_thr=-1):
        self.topk = topk
        self.alpha = alpha
        self.iou_calculator = build_iou_calculator(iou_calculator)
        self.ignore_iof_thr = ignore_iof_thr

    """Assign a corresponding gt bbox or background to each bbox.

    Args:
        topk (int): number of bbox selected in each level.
        alpha (float): param of cost rate for each proposal only in DDOD.
            Default None.
        iou_calculator (dict): builder of IoU calculator.
            Default dict(type='BboxOverlaps2D').
        ignore_iof_thr (int): whether ignore max overlaps or not.
            Default -1 (1 or -1).
    """

    # https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py
    def assign(self,
               bboxes,
               num_level_bboxes,
               gt_bboxes,
               gt_bboxes_ignore=None,
               gt_labels=None,
               cls_scores=None,
               bbox_preds=None):
        """Assign gt to bboxes.

        The assignment is done in following steps

        1. compute iou between all bbox (bbox of all pyramid levels) and gt
        2. compute center distance between all bbox and gt
        3. on each pyramid level, for each gt, select k bbox whose center
           are closest to the gt center, so we total select k*l bbox as
           candidates for each gt
        4. get corresponding iou for the these candidates, and compute the
           mean and std, set mean + std as the iou threshold
        5. select these candidates whose iou are greater than or equal to
           the threshold as positive
        6. limit the positive sample's center in gt

        If ``alpha`` is not None, and ``cls_scores`` and `bbox_preds`
        are not None, the overlaps calculation in the first step
        will also include dynamic cost, which is currently only used in
        the DDOD.

        Args:
            bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4).
            num_level_bboxes (List): num of bboxes in each level
            gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
            gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
                labelled as `ignored`, e.g., crowd boxes in COCO. Default None.
            gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
            cls_scores (list[Tensor]): Classification scores for all scale
                levels, each is a 4D-tensor, the channels number is
                num_base_priors * num_classes. Default None.
            bbox_preds (list[Tensor]): Box energies / deltas for all scale
                levels, each is a 4D-tensor, the channels number is
                num_base_priors * 4. Default None.

        Returns:
            :obj:`AssignResult`: The assign result.
        """
        INF = 100000000
        bboxes = bboxes[:, :4]
        num_gt, num_bboxes = gt_bboxes.size(0), bboxes.size(0)

        message = 'Invalid alpha parameter because cls_scores or ' \
                  'bbox_preds are None. If you want to use the ' \
                  'cost-based ATSSAssigner,  please set cls_scores, ' \
                  'bbox_preds and self.alpha at the same time. '

        if self.alpha is None:
            # ATSSAssigner
            overlaps = self.iou_calculator(bboxes, gt_bboxes)
            if cls_scores is not None or bbox_preds is not None:
                warnings.warn(message)
        else:
            # Dynamic cost ATSSAssigner in DDOD
            assert cls_scores is not None and bbox_preds is not None, message

            # compute cls cost for bbox and GT
            cls_cost = torch.sigmoid(cls_scores[:, gt_labels])

            # compute iou between all bbox and gt
            overlaps = self.iou_calculator(bbox_preds, gt_bboxes)

            # make sure that we are in element-wise multiplication
            assert cls_cost.shape == overlaps.shape

            # overlaps is actually a cost matrix
            overlaps = cls_cost**(1 - self.alpha) * overlaps**self.alpha

        # assign 0 by default
        assigned_gt_inds = overlaps.new_full((num_bboxes, ),
                                             0,
                                             dtype=torch.long)

        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = overlaps.new_zeros((num_bboxes, ))
            if num_gt == 0:
                # No truth, assign everything to background
                assigned_gt_inds[:] = 0
            if gt_labels is None:
                assigned_labels = None
            else:
                assigned_labels = overlaps.new_full((num_bboxes, ),
                                                    -1,
                                                    dtype=torch.long)
            return AssignResult(
                num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)

        # compute center distance between all bbox and gt
        gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
        gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
        gt_points = torch.stack((gt_cx, gt_cy), dim=1)

        bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0
        bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0
        bboxes_points = torch.stack((bboxes_cx, bboxes_cy), dim=1)

        distances = (bboxes_points[:, None, :] -
                     gt_points[None, :, :]).pow(2).sum(-1).sqrt()

        if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None
                and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0):
            ignore_overlaps = self.iou_calculator(
                bboxes, gt_bboxes_ignore, mode='iof')
            ignore_max_overlaps, _ = ignore_overlaps.max(dim=1)
            ignore_idxs = ignore_max_overlaps > self.ignore_iof_thr
            distances[ignore_idxs, :] = INF
            assigned_gt_inds[ignore_idxs] = -1

        # Selecting candidates based on the center distance
        candidate_idxs = []
        start_idx = 0
        for level, bboxes_per_level in enumerate(num_level_bboxes):
            # on each pyramid level, for each gt,
            # select k bbox whose center are closest to the gt center
            end_idx = start_idx + bboxes_per_level
            distances_per_level = distances[start_idx:end_idx, :]
            selectable_k = min(self.topk, bboxes_per_level)

            _, topk_idxs_per_level = distances_per_level.topk(
                selectable_k, dim=0, largest=False)
            candidate_idxs.append(topk_idxs_per_level + start_idx)
            start_idx = end_idx
        candidate_idxs = torch.cat(candidate_idxs, dim=0)

        # get corresponding iou for the these candidates, and compute the
        # mean and std, set mean + std as the iou threshold
        candidate_overlaps = overlaps[candidate_idxs, torch.arange(num_gt)]
        overlaps_mean_per_gt = candidate_overlaps.mean(0)
        overlaps_std_per_gt = candidate_overlaps.std(0)
        overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt

        is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :]

        # limit the positive sample's center in gt
        for gt_idx in range(num_gt):
            candidate_idxs[:, gt_idx] += gt_idx * num_bboxes
        ep_bboxes_cx = bboxes_cx.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        ep_bboxes_cy = bboxes_cy.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        candidate_idxs = candidate_idxs.view(-1)

        # calculate the left, top, right, bottom distance between positive
        # bbox center and gt side
        l_ = ep_bboxes_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0]
        t_ = ep_bboxes_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1]
        r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].view(-1, num_gt)
        b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].view(-1, num_gt)
        is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01

        is_pos = is_pos & is_in_gts

        # if an anchor box is assigned to multiple gts,
        # the one with the highest IoU will be selected.
        overlaps_inf = torch.full_like(overlaps,
                                       -INF).t().contiguous().view(-1)
        index = candidate_idxs.view(-1)[is_pos.view(-1)]
        overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index]
        overlaps_inf = overlaps_inf.view(num_gt, -1).t()

        max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1)
        assigned_gt_inds[
            max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1

        if gt_labels is not None:
            assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
            pos_inds = torch.nonzero(
                assigned_gt_inds > 0, as_tuple=False).squeeze()
            if pos_inds.numel() > 0:
                assigned_labels[pos_inds] = gt_labels[
                    assigned_gt_inds[pos_inds] - 1]
        else:
            assigned_labels = None
        return AssignResult(
            num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)