Spaces:
Runtime error
Runtime error
File size: 18,527 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from ...core.bbox.assigners import AscendMaxIoUAssigner
from ...core.bbox.samplers import PseudoSampler
from ...utils import (batch_images_to_levels, get_max_num_gt_division_factor,
masked_fill)
from ..builder import HEADS
from .anchor_head import AnchorHead
@HEADS.register_module()
class AscendAnchorHead(AnchorHead):
"""Ascend Anchor-based head (RetinaNet, SSD, etc.).
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels. Used in child classes.
anchor_generator (dict): Config dict for anchor generator
bbox_coder (dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
train_cfg (dict): Training config of anchor head.
test_cfg (dict): Testing config of anchor head.
init_cfg (dict or list[dict], optional): Initialization config dict.
""" # noqa: W605
def __init__(self,
num_classes,
in_channels,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8, 16, 32],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=(.0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0)),
reg_decoded_bbox=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
train_cfg=None,
test_cfg=None,
init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)):
super(AscendAnchorHead, self).__init__(
num_classes=num_classes,
in_channels=in_channels,
feat_channels=feat_channels,
anchor_generator=anchor_generator,
bbox_coder=bbox_coder,
reg_decoded_bbox=reg_decoded_bbox,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
def get_batch_gt_bboxes(self, gt_bboxes_list, num_images, gt_nums, device,
max_gt_labels):
"""Get ground truth bboxes of all image.
Args:
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
max_gt_labels(int): The max ground truth bboxes num of all image.
Returns:
batch_gt_bboxes: (Tensor): Ground truth bboxes of all image.
"""
# a static ground truth boxes.
# Save static gt. Related to Ascend. Helps improve performance
if not hasattr(self, 'batch_gt_bboxes'):
self.batch_gt_bboxes = {}
# a min anchor filled the excess anchor
if not hasattr(self, 'min_anchor'):
self.min_anchor = (-1354, -1344)
if gt_bboxes_list is None:
batch_gt_bboxes = None
else:
if self.batch_gt_bboxes.get(max_gt_labels) is None:
batch_gt_bboxes = torch.zeros((num_images, max_gt_labels, 4),
dtype=gt_bboxes_list[0].dtype,
device=device)
batch_gt_bboxes[:, :, :2] = self.min_anchor[0]
batch_gt_bboxes[:, :, 2:] = self.min_anchor[1]
self.batch_gt_bboxes[max_gt_labels] = batch_gt_bboxes.clone()
else:
batch_gt_bboxes = self.batch_gt_bboxes.get(
max_gt_labels).clone()
for index_imgs, gt_bboxes in enumerate(gt_bboxes_list):
batch_gt_bboxes[index_imgs, :gt_nums[index_imgs]] = gt_bboxes
return batch_gt_bboxes
def get_batch_gt_bboxes_ignore(self, gt_bboxes_ignore_list, num_images,
gt_nums, device):
"""Ground truth bboxes to be ignored of all image.
Args:
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
Returns:
batch_gt_bboxes_ignore: (Tensor): Ground truth bboxes to be
ignored of all image.
"""
# TODO: support gt_bboxes_ignore_list
if gt_bboxes_ignore_list is None:
batch_gt_bboxes_ignore = None
else:
raise RuntimeError('gt_bboxes_ignore not support yet')
return batch_gt_bboxes_ignore
def get_batch_gt_labels(self, gt_labels_list, num_images, gt_nums, device,
max_gt_labels):
"""Ground truth bboxes to be ignored of all image.
Args:
gt_labels_list (list[Tensor]): Ground truth labels.
num_images (int): The num of images.
gt_nums(list[int]): The ground truth bboxes num of each image.
device (torch.device | str): Device for returned tensors
Returns:
batch_gt_labels: (Tensor): Ground truth labels of all image.
"""
if gt_labels_list is None:
batch_gt_labels = None
else:
batch_gt_labels = torch.zeros((num_images, max_gt_labels),
dtype=gt_labels_list[0].dtype,
device=device)
for index_imgs, gt_labels in enumerate(gt_labels_list):
batch_gt_labels[index_imgs, :gt_nums[index_imgs]] = gt_labels
return batch_gt_labels
def _get_targets_concat(self,
batch_anchors,
batch_valid_flags,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
batch_gt_labels,
img_metas,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in all
images.
Args:
batch_anchors (Tensor): anchors of all image, which are
concatenated into a single tensor of
shape (num_imgs, num_anchors ,4).
batch_valid_flags (Tensor): valid flags of all image,
which are concatenated into a single tensor of
shape (num_imgs, num_anchors,).
batch_gt_bboxes (Tensor): Ground truth bboxes of all image,
shape (num_imgs, max_gt_nums, 4).
batch_gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_imgs, num_ignored_gts, 4).
batch_gt_labels (Tensor): Ground truth labels of each box,
shape (num_imgs, max_gt_nums,).
img_metas (list[dict]): Meta info of each image.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple:
batch_labels (Tensor): Labels of all level
batch_label_weights (Tensor): Label weights of all level
batch_bbox_targets (Tensor): BBox targets of all level
batch_bbox_weights (Tensor): BBox weights of all level
batch_pos_mask (Tensor): Positive samples mask in all images
batch_neg_mask (Tensor): Negative samples mask in all images
sampling_result (Sampling): The result of sampling,
default: None.
"""
num_imgs, num_anchors, _ = batch_anchors.size()
# assign gt and sample batch_anchors
assign_result = self.assigner.assign(
batch_anchors,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
None if self.sampling else batch_gt_labels,
batch_bboxes_ignore_mask=batch_valid_flags)
# TODO: support sampling_result
sampling_result = None
batch_pos_mask = assign_result.batch_pos_mask
batch_neg_mask = assign_result.batch_neg_mask
batch_anchor_gt_indes = assign_result.batch_anchor_gt_indes
batch_anchor_gt_labels = assign_result.batch_anchor_gt_labels
batch_anchor_gt_bboxes = torch.zeros(
batch_anchors.size(),
dtype=batch_anchors.dtype,
device=batch_anchors.device)
for index_imgs in range(num_imgs):
batch_anchor_gt_bboxes[index_imgs] = torch.index_select(
batch_gt_bboxes[index_imgs], 0,
batch_anchor_gt_indes[index_imgs])
batch_bbox_targets = torch.zeros_like(batch_anchors)
batch_bbox_weights = torch.zeros_like(batch_anchors)
batch_labels = batch_anchors.new_full((num_imgs, num_anchors),
self.num_classes,
dtype=torch.int)
batch_label_weights = batch_anchors.new_zeros((num_imgs, num_anchors),
dtype=torch.float)
if not self.reg_decoded_bbox:
batch_pos_bbox_targets = self.bbox_coder.encode(
batch_anchors, batch_anchor_gt_bboxes)
else:
batch_pos_bbox_targets = batch_anchor_gt_bboxes
batch_bbox_targets = masked_fill(batch_bbox_targets,
batch_pos_mask.unsqueeze(2),
batch_pos_bbox_targets)
batch_bbox_weights = masked_fill(batch_bbox_weights,
batch_pos_mask.unsqueeze(2), 1.0)
if batch_gt_labels is None:
batch_labels = masked_fill(batch_labels, batch_pos_mask, 0.0)
else:
batch_labels = masked_fill(batch_labels, batch_pos_mask,
batch_anchor_gt_labels)
if self.train_cfg.pos_weight <= 0:
batch_label_weights = masked_fill(batch_label_weights,
batch_pos_mask, 1.0)
else:
batch_label_weights = masked_fill(batch_label_weights,
batch_pos_mask,
self.train_cfg.pos_weight)
batch_label_weights = masked_fill(batch_label_weights, batch_neg_mask,
1.0)
return (batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result)
def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True,
return_sampling_results=False,
return_level=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
return_sampling_results (bool): Whether to return the result of
sample.
return_level (bool): Whether to map outputs back to the levels
of feature map sizes.
Returns:
tuple: Usually returns a tuple containing learning targets.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_targets_list (list[Tensor]): BBox targets of each level.
- bbox_weights_list (list[Tensor]): BBox weights of each level.
- num_total_pos (int): Number of positive samples in all
images.
- num_total_neg (int): Number of negative samples in all
images.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end
"""
assert gt_bboxes_ignore_list is None
assert unmap_outputs is True
assert return_sampling_results is False
assert self.train_cfg.allowed_border < 0
assert isinstance(self.assigner, AscendMaxIoUAssigner)
assert isinstance(self.sampler, PseudoSampler)
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
device = anchor_list[0][0].device
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
batch_anchor_list = []
batch_valid_flag_list = []
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
batch_anchor_list.append(torch.cat(anchor_list[i]))
batch_valid_flag_list.append(torch.cat(valid_flag_list[i]))
batch_anchors = torch.cat(
[torch.unsqueeze(anchor, 0) for anchor in batch_anchor_list], 0)
batch_valid_flags = torch.cat([
torch.unsqueeze(batch_valid_flag, 0)
for batch_valid_flag in batch_valid_flag_list
], 0)
gt_nums = [len(gt_bbox) for gt_bbox in gt_bboxes_list]
max_gt_nums = get_max_num_gt_division_factor(gt_nums)
batch_gt_bboxes = self.get_batch_gt_bboxes(gt_bboxes_list, num_imgs,
gt_nums, device,
max_gt_nums)
batch_gt_bboxes_ignore = self.get_batch_gt_bboxes_ignore(
gt_bboxes_ignore_list, num_imgs, gt_nums, device)
batch_gt_labels = self.get_batch_gt_labels(gt_labels_list, num_imgs,
gt_nums, device,
max_gt_nums)
results = self._get_targets_concat(
batch_anchors,
batch_valid_flags,
batch_gt_bboxes,
batch_gt_bboxes_ignore,
batch_gt_labels,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
(batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result) = results[:7]
rest_results = list(results[7:]) # user-added return values
# sampled anchors of all images
min_num = torch.ones((num_imgs, ),
dtype=torch.long,
device=batch_pos_mask.device)
num_total_pos = torch.sum(
torch.max(torch.sum(batch_pos_mask, dim=1), min_num))
num_total_neg = torch.sum(
torch.max(torch.sum(batch_neg_mask, dim=1), min_num))
if return_level is True:
labels_list = batch_images_to_levels(batch_labels,
num_level_anchors)
label_weights_list = batch_images_to_levels(
batch_label_weights, num_level_anchors)
bbox_targets_list = batch_images_to_levels(batch_bbox_targets,
num_level_anchors)
bbox_weights_list = batch_images_to_levels(batch_bbox_weights,
num_level_anchors)
res = (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
if return_sampling_results:
res = res + (sampling_result, )
for i, r in enumerate(rest_results): # user-added return values
rest_results[i] = batch_images_to_levels(r, num_level_anchors)
return res + tuple(rest_results)
else:
res = (batch_labels, batch_label_weights, batch_bbox_targets,
batch_bbox_weights, batch_pos_mask, batch_neg_mask,
sampling_result, num_total_pos, num_total_neg,
batch_anchors)
return res
|