File size: 18,527 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from ...core.bbox.assigners import AscendMaxIoUAssigner
from ...core.bbox.samplers import PseudoSampler
from ...utils import (batch_images_to_levels, get_max_num_gt_division_factor,
                      masked_fill)
from ..builder import HEADS
from .anchor_head import AnchorHead


@HEADS.register_module()
class AscendAnchorHead(AnchorHead):
    """Ascend Anchor-based head (RetinaNet, SSD, etc.).

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels. Used in child classes.
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Default False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """  # noqa: W605

    def __init__(self,
                 num_classes,
                 in_channels,
                 feat_channels=256,
                 anchor_generator=dict(
                     type='AnchorGenerator',
                     scales=[8, 16, 32],
                     ratios=[0.5, 1.0, 2.0],
                     strides=[4, 8, 16, 32, 64]),
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     clip_border=True,
                     target_means=(.0, .0, .0, .0),
                     target_stds=(1.0, 1.0, 1.0, 1.0)),
                 reg_decoded_bbox=False,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=dict(type='Normal', layer='Conv2d', std=0.01)):
        super(AscendAnchorHead, self).__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            feat_channels=feat_channels,
            anchor_generator=anchor_generator,
            bbox_coder=bbox_coder,
            reg_decoded_bbox=reg_decoded_bbox,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)

    def get_batch_gt_bboxes(self, gt_bboxes_list, num_images, gt_nums, device,
                            max_gt_labels):
        """Get ground truth bboxes of all image.

        Args:
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            num_images (int): The num of images.
            gt_nums(list[int]): The ground truth bboxes num of each image.
            device (torch.device | str): Device for returned tensors
            max_gt_labels(int): The max ground truth bboxes num of all image.
        Returns:
            batch_gt_bboxes: (Tensor): Ground truth bboxes of all image.
        """
        # a static ground truth boxes.
        # Save static gt. Related to Ascend. Helps improve performance
        if not hasattr(self, 'batch_gt_bboxes'):
            self.batch_gt_bboxes = {}
        # a min anchor filled the excess anchor
        if not hasattr(self, 'min_anchor'):
            self.min_anchor = (-1354, -1344)
        if gt_bboxes_list is None:
            batch_gt_bboxes = None
        else:
            if self.batch_gt_bboxes.get(max_gt_labels) is None:
                batch_gt_bboxes = torch.zeros((num_images, max_gt_labels, 4),
                                              dtype=gt_bboxes_list[0].dtype,
                                              device=device)
                batch_gt_bboxes[:, :, :2] = self.min_anchor[0]
                batch_gt_bboxes[:, :, 2:] = self.min_anchor[1]
                self.batch_gt_bboxes[max_gt_labels] = batch_gt_bboxes.clone()
            else:
                batch_gt_bboxes = self.batch_gt_bboxes.get(
                    max_gt_labels).clone()
            for index_imgs, gt_bboxes in enumerate(gt_bboxes_list):
                batch_gt_bboxes[index_imgs, :gt_nums[index_imgs]] = gt_bboxes
        return batch_gt_bboxes

    def get_batch_gt_bboxes_ignore(self, gt_bboxes_ignore_list, num_images,
                                   gt_nums, device):
        """Ground truth bboxes to be ignored of all image.

        Args:
            gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
                ignored.
            num_images (int): The num of images.
            gt_nums(list[int]): The ground truth bboxes num of each image.
            device (torch.device | str): Device for returned tensors
        Returns:
            batch_gt_bboxes_ignore: (Tensor): Ground truth bboxes to be
                ignored of all image.
        """
        # TODO: support gt_bboxes_ignore_list
        if gt_bboxes_ignore_list is None:
            batch_gt_bboxes_ignore = None
        else:
            raise RuntimeError('gt_bboxes_ignore not support yet')
        return batch_gt_bboxes_ignore

    def get_batch_gt_labels(self, gt_labels_list, num_images, gt_nums, device,
                            max_gt_labels):
        """Ground truth bboxes to be ignored of all image.

        Args:
            gt_labels_list (list[Tensor]): Ground truth labels.
            num_images (int): The num of images.
            gt_nums(list[int]): The ground truth bboxes num of each image.
            device (torch.device | str): Device for returned tensors
        Returns:
            batch_gt_labels: (Tensor): Ground truth labels of all image.
        """
        if gt_labels_list is None:
            batch_gt_labels = None
        else:
            batch_gt_labels = torch.zeros((num_images, max_gt_labels),
                                          dtype=gt_labels_list[0].dtype,
                                          device=device)
            for index_imgs, gt_labels in enumerate(gt_labels_list):
                batch_gt_labels[index_imgs, :gt_nums[index_imgs]] = gt_labels

        return batch_gt_labels

    def _get_targets_concat(self,
                            batch_anchors,
                            batch_valid_flags,
                            batch_gt_bboxes,
                            batch_gt_bboxes_ignore,
                            batch_gt_labels,
                            img_metas,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in all
        images.

        Args:
            batch_anchors (Tensor): anchors of all image, which are
                concatenated into a single tensor of
                shape (num_imgs, num_anchors ,4).
            batch_valid_flags (Tensor): valid flags of all image,
                which are concatenated into a single tensor of
                    shape (num_imgs, num_anchors,).
            batch_gt_bboxes (Tensor): Ground truth bboxes of all image,
                shape (num_imgs, max_gt_nums, 4).
            batch_gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_imgs, num_ignored_gts, 4).
            batch_gt_labels (Tensor): Ground truth labels of each box,
                shape (num_imgs, max_gt_nums,).
            img_metas (list[dict]): Meta info of each image.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple:
                batch_labels (Tensor): Labels of all level
                batch_label_weights (Tensor): Label weights of all level
                batch_bbox_targets (Tensor): BBox targets of all level
                batch_bbox_weights (Tensor): BBox weights of all level
                batch_pos_mask (Tensor): Positive samples mask in all images
                batch_neg_mask (Tensor): Negative samples mask in all images
                sampling_result (Sampling): The result of sampling,
                    default: None.
        """
        num_imgs, num_anchors, _ = batch_anchors.size()
        # assign gt and sample batch_anchors
        assign_result = self.assigner.assign(
            batch_anchors,
            batch_gt_bboxes,
            batch_gt_bboxes_ignore,
            None if self.sampling else batch_gt_labels,
            batch_bboxes_ignore_mask=batch_valid_flags)
        # TODO: support sampling_result
        sampling_result = None
        batch_pos_mask = assign_result.batch_pos_mask
        batch_neg_mask = assign_result.batch_neg_mask
        batch_anchor_gt_indes = assign_result.batch_anchor_gt_indes
        batch_anchor_gt_labels = assign_result.batch_anchor_gt_labels

        batch_anchor_gt_bboxes = torch.zeros(
            batch_anchors.size(),
            dtype=batch_anchors.dtype,
            device=batch_anchors.device)
        for index_imgs in range(num_imgs):
            batch_anchor_gt_bboxes[index_imgs] = torch.index_select(
                batch_gt_bboxes[index_imgs], 0,
                batch_anchor_gt_indes[index_imgs])

        batch_bbox_targets = torch.zeros_like(batch_anchors)
        batch_bbox_weights = torch.zeros_like(batch_anchors)
        batch_labels = batch_anchors.new_full((num_imgs, num_anchors),
                                              self.num_classes,
                                              dtype=torch.int)
        batch_label_weights = batch_anchors.new_zeros((num_imgs, num_anchors),
                                                      dtype=torch.float)

        if not self.reg_decoded_bbox:
            batch_pos_bbox_targets = self.bbox_coder.encode(
                batch_anchors, batch_anchor_gt_bboxes)
        else:
            batch_pos_bbox_targets = batch_anchor_gt_bboxes

        batch_bbox_targets = masked_fill(batch_bbox_targets,
                                         batch_pos_mask.unsqueeze(2),
                                         batch_pos_bbox_targets)
        batch_bbox_weights = masked_fill(batch_bbox_weights,
                                         batch_pos_mask.unsqueeze(2), 1.0)
        if batch_gt_labels is None:
            batch_labels = masked_fill(batch_labels, batch_pos_mask, 0.0)
        else:
            batch_labels = masked_fill(batch_labels, batch_pos_mask,
                                       batch_anchor_gt_labels)
        if self.train_cfg.pos_weight <= 0:
            batch_label_weights = masked_fill(batch_label_weights,
                                              batch_pos_mask, 1.0)
        else:
            batch_label_weights = masked_fill(batch_label_weights,
                                              batch_pos_mask,
                                              self.train_cfg.pos_weight)
        batch_label_weights = masked_fill(batch_label_weights, batch_neg_mask,
                                          1.0)
        return (batch_labels, batch_label_weights, batch_bbox_targets,
                batch_bbox_weights, batch_pos_mask, batch_neg_mask,
                sampling_result)

    def get_targets(self,
                    anchor_list,
                    valid_flag_list,
                    gt_bboxes_list,
                    img_metas,
                    gt_bboxes_ignore_list=None,
                    gt_labels_list=None,
                    label_channels=1,
                    unmap_outputs=True,
                    return_sampling_results=False,
                    return_level=True):
        """Compute regression and classification targets for anchors in
        multiple images.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, 4).
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            img_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
                ignored.
            gt_labels_list (list[Tensor]): Ground truth labels of each box.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.
            return_sampling_results (bool): Whether to return the result of
                sample.
            return_level (bool): Whether to map outputs back to the levels
                of feature map sizes.
        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each
                  level.
                - bbox_targets_list (list[Tensor]): BBox targets of each level.
                - bbox_weights_list (list[Tensor]): BBox weights of each level.
                - num_total_pos (int): Number of positive samples in all
                  images.
                - num_total_neg (int): Number of negative samples in all
                  images.

            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end
        """
        assert gt_bboxes_ignore_list is None
        assert unmap_outputs is True
        assert return_sampling_results is False
        assert self.train_cfg.allowed_border < 0
        assert isinstance(self.assigner, AscendMaxIoUAssigner)
        assert isinstance(self.sampler, PseudoSampler)
        num_imgs = len(img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        device = anchor_list[0][0].device
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]

        batch_anchor_list = []
        batch_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            batch_anchor_list.append(torch.cat(anchor_list[i]))
            batch_valid_flag_list.append(torch.cat(valid_flag_list[i]))
        batch_anchors = torch.cat(
            [torch.unsqueeze(anchor, 0) for anchor in batch_anchor_list], 0)
        batch_valid_flags = torch.cat([
            torch.unsqueeze(batch_valid_flag, 0)
            for batch_valid_flag in batch_valid_flag_list
        ], 0)

        gt_nums = [len(gt_bbox) for gt_bbox in gt_bboxes_list]
        max_gt_nums = get_max_num_gt_division_factor(gt_nums)
        batch_gt_bboxes = self.get_batch_gt_bboxes(gt_bboxes_list, num_imgs,
                                                   gt_nums, device,
                                                   max_gt_nums)
        batch_gt_bboxes_ignore = self.get_batch_gt_bboxes_ignore(
            gt_bboxes_ignore_list, num_imgs, gt_nums, device)
        batch_gt_labels = self.get_batch_gt_labels(gt_labels_list, num_imgs,
                                                   gt_nums, device,
                                                   max_gt_nums)

        results = self._get_targets_concat(
            batch_anchors,
            batch_valid_flags,
            batch_gt_bboxes,
            batch_gt_bboxes_ignore,
            batch_gt_labels,
            img_metas,
            label_channels=label_channels,
            unmap_outputs=unmap_outputs)

        (batch_labels, batch_label_weights, batch_bbox_targets,
         batch_bbox_weights, batch_pos_mask, batch_neg_mask,
         sampling_result) = results[:7]
        rest_results = list(results[7:])  # user-added return values

        # sampled anchors of all images
        min_num = torch.ones((num_imgs, ),
                             dtype=torch.long,
                             device=batch_pos_mask.device)
        num_total_pos = torch.sum(
            torch.max(torch.sum(batch_pos_mask, dim=1), min_num))
        num_total_neg = torch.sum(
            torch.max(torch.sum(batch_neg_mask, dim=1), min_num))
        if return_level is True:
            labels_list = batch_images_to_levels(batch_labels,
                                                 num_level_anchors)
            label_weights_list = batch_images_to_levels(
                batch_label_weights, num_level_anchors)
            bbox_targets_list = batch_images_to_levels(batch_bbox_targets,
                                                       num_level_anchors)
            bbox_weights_list = batch_images_to_levels(batch_bbox_weights,
                                                       num_level_anchors)
            res = (labels_list, label_weights_list, bbox_targets_list,
                   bbox_weights_list, num_total_pos, num_total_neg)
            if return_sampling_results:
                res = res + (sampling_result, )
            for i, r in enumerate(rest_results):  # user-added return values
                rest_results[i] = batch_images_to_levels(r, num_level_anchors)

            return res + tuple(rest_results)
        else:
            res = (batch_labels, batch_label_weights, batch_bbox_targets,
                   batch_bbox_weights, batch_pos_mask, batch_neg_mask,
                   sampling_result, num_total_pos, num_total_neg,
                   batch_anchors)
            return res