Spaces:
Runtime error
Runtime error
File size: 23,096 Bytes
51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import bias_init_with_prob, normal_init
from mmcv.runner import force_fp32
from mmdet.core import multi_apply
from mmdet.core.anchor.point_generator import MlvlPointGenerator
from mmdet.core.bbox import bbox_overlaps
from mmdet.models import HEADS
from mmdet.models.dense_heads.atss_head import reduce_mean
from mmdet.models.dense_heads.fcos_head import FCOSHead
from mmdet.models.dense_heads.paa_head import levels_to_images
EPS = 1e-12
class CenterPrior(nn.Module):
"""Center Weighting module to adjust the category-specific prior
distributions.
Args:
force_topk (bool): When no point falls into gt_bbox, forcibly
select the k points closest to the center to calculate
the center prior. Defaults to False.
topk (int): The number of points used to calculate the
center prior when no point falls in gt_bbox. Only work when
force_topk if True. Defaults to 9.
num_classes (int): The class number of dataset. Defaults to 80.
strides (tuple[int]): The stride of each input feature map. Defaults
to (8, 16, 32, 64, 128).
"""
def __init__(self,
force_topk=False,
topk=9,
num_classes=80,
strides=(8, 16, 32, 64, 128)):
super(CenterPrior, self).__init__()
self.mean = nn.Parameter(torch.zeros(num_classes, 2))
self.sigma = nn.Parameter(torch.ones(num_classes, 2))
self.strides = strides
self.force_topk = force_topk
self.topk = topk
def forward(self, anchor_points_list, gt_bboxes, labels,
inside_gt_bbox_mask):
"""Get the center prior of each point on the feature map for each
instance.
Args:
anchor_points_list (list[Tensor]): list of coordinate
of points on feature map. Each with shape
(num_points, 2).
gt_bboxes (Tensor): The gt_bboxes with shape of
(num_gt, 4).
labels (Tensor): The gt_labels with shape of (num_gt).
inside_gt_bbox_mask (Tensor): Tensor of bool type,
with shape of (num_points, num_gt), each
value is used to mark whether this point falls
within a certain gt.
Returns:
tuple(Tensor):
- center_prior_weights(Tensor): Float tensor with shape \
of (num_points, num_gt). Each value represents \
the center weighting coefficient.
- inside_gt_bbox_mask (Tensor): Tensor of bool type, \
with shape of (num_points, num_gt), each \
value is used to mark whether this point falls \
within a certain gt or is the topk nearest points for \
a specific gt_bbox.
"""
inside_gt_bbox_mask = inside_gt_bbox_mask.clone()
num_gts = len(labels)
num_points = sum([len(item) for item in anchor_points_list])
if num_gts == 0:
return gt_bboxes.new_zeros(num_points,
num_gts), inside_gt_bbox_mask
center_prior_list = []
for slvl_points, stride in zip(anchor_points_list, self.strides):
# slvl_points: points from single level in FPN, has shape (h*w, 2)
# single_level_points has shape (h*w, num_gt, 2)
single_level_points = slvl_points[:, None, :].expand(
(slvl_points.size(0), len(gt_bboxes), 2))
gt_center_x = ((gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2)
gt_center_y = ((gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2)
gt_center = torch.stack((gt_center_x, gt_center_y), dim=1)
gt_center = gt_center[None]
# instance_center has shape (1, num_gt, 2)
instance_center = self.mean[labels][None]
# instance_sigma has shape (1, num_gt, 2)
instance_sigma = self.sigma[labels][None]
# distance has shape (num_points, num_gt, 2)
distance = (((single_level_points - gt_center) / float(stride) -
instance_center)**2)
center_prior = torch.exp(-distance /
(2 * instance_sigma**2)).prod(dim=-1)
center_prior_list.append(center_prior)
center_prior_weights = torch.cat(center_prior_list, dim=0)
if self.force_topk:
gt_inds_no_points_inside = torch.nonzero(
inside_gt_bbox_mask.sum(0) == 0).reshape(-1)
if gt_inds_no_points_inside.numel():
topk_center_index = \
center_prior_weights[:, gt_inds_no_points_inside].topk(
self.topk,
dim=0)[1]
temp_mask = inside_gt_bbox_mask[:, gt_inds_no_points_inside]
inside_gt_bbox_mask[:, gt_inds_no_points_inside] = \
torch.scatter(temp_mask,
dim=0,
index=topk_center_index,
src=torch.ones_like(
topk_center_index,
dtype=torch.bool))
center_prior_weights[~inside_gt_bbox_mask] = 0
return center_prior_weights, inside_gt_bbox_mask
@HEADS.register_module()
class AutoAssignHead(FCOSHead):
"""AutoAssignHead head used in AutoAssign.
More details can be found in the `paper
<https://arxiv.org/abs/2007.03496>`_ .
Args:
force_topk (bool): Used in center prior initialization to
handle extremely small gt. Default is False.
topk (int): The number of points used to calculate the
center prior when no point falls in gt_bbox. Only work when
force_topk if True. Defaults to 9.
pos_loss_weight (float): The loss weight of positive loss
and with default value 0.25.
neg_loss_weight (float): The loss weight of negative loss
and with default value 0.75.
center_loss_weight (float): The loss weight of center prior
loss and with default value 0.75.
"""
def __init__(self,
*args,
force_topk=False,
topk=9,
pos_loss_weight=0.25,
neg_loss_weight=0.75,
center_loss_weight=0.75,
**kwargs):
super().__init__(*args, conv_bias=True, **kwargs)
self.center_prior = CenterPrior(
force_topk=force_topk,
topk=topk,
num_classes=self.num_classes,
strides=self.strides)
self.pos_loss_weight = pos_loss_weight
self.neg_loss_weight = neg_loss_weight
self.center_loss_weight = center_loss_weight
self.prior_generator = MlvlPointGenerator(self.strides, offset=0)
def init_weights(self):
"""Initialize weights of the head.
In particular, we have special initialization for classified conv's and
regression conv's bias
"""
super(AutoAssignHead, self).init_weights()
bias_cls = bias_init_with_prob(0.02)
normal_init(self.conv_cls, std=0.01, bias=bias_cls)
normal_init(self.conv_reg, std=0.01, bias=4.0)
def forward_single(self, x, scale, stride):
"""Forward features of a single scale level.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
stride (int): The corresponding stride for feature maps, only
used to normalize the bbox prediction when self.norm_on_bbox
is True.
Returns:
tuple: scores for each class, bbox predictions and centerness \
predictions of input feature maps.
"""
cls_score, bbox_pred, cls_feat, reg_feat = super(
FCOSHead, self).forward_single(x)
centerness = self.conv_centerness(reg_feat)
# scale the bbox_pred of different level
# float to avoid overflow when enabling FP16
bbox_pred = scale(bbox_pred).float()
# bbox_pred needed for gradient computation has been modified
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
# F.relu(bbox_pred) with bbox_pred.clamp(min=0)
bbox_pred = bbox_pred.clamp(min=0)
bbox_pred *= stride
return cls_score, bbox_pred, centerness
def get_pos_loss_single(self, cls_score, objectness, reg_loss, gt_labels,
center_prior_weights):
"""Calculate the positive loss of all points in gt_bboxes.
Args:
cls_score (Tensor): All category scores for each point on
the feature map. The shape is (num_points, num_class).
objectness (Tensor): Foreground probability of all points,
has shape (num_points, 1).
reg_loss (Tensor): The regression loss of each gt_bbox and each
prediction box, has shape of (num_points, num_gt).
gt_labels (Tensor): The zeros based gt_labels of all gt
with shape of (num_gt,).
center_prior_weights (Tensor): Float tensor with shape
of (num_points, num_gt). Each value represents
the center weighting coefficient.
Returns:
tuple[Tensor]:
- pos_loss (Tensor): The positive loss of all points
in the gt_bboxes.
"""
# p_loc: localization confidence
p_loc = torch.exp(-reg_loss)
# p_cls: classification confidence
p_cls = (cls_score * objectness)[:, gt_labels]
# p_pos: joint confidence indicator
p_pos = p_cls * p_loc
# 3 is a hyper-parameter to control the contributions of high and
# low confidence locations towards positive losses.
confidence_weight = torch.exp(p_pos * 3)
p_pos_weight = (confidence_weight * center_prior_weights) / (
(confidence_weight * center_prior_weights).sum(
0, keepdim=True)).clamp(min=EPS)
reweighted_p_pos = (p_pos * p_pos_weight).sum(0)
pos_loss = F.binary_cross_entropy(
reweighted_p_pos,
torch.ones_like(reweighted_p_pos),
reduction='none')
pos_loss = pos_loss.sum() * self.pos_loss_weight
return pos_loss,
def get_neg_loss_single(self, cls_score, objectness, gt_labels, ious,
inside_gt_bbox_mask):
"""Calculate the negative loss of all points in feature map.
Args:
cls_score (Tensor): All category scores for each point on
the feature map. The shape is (num_points, num_class).
objectness (Tensor): Foreground probability of all points
and is shape of (num_points, 1).
gt_labels (Tensor): The zeros based label of all gt with shape of
(num_gt).
ious (Tensor): Float tensor with shape of (num_points, num_gt).
Each value represent the iou of pred_bbox and gt_bboxes.
inside_gt_bbox_mask (Tensor): Tensor of bool type,
with shape of (num_points, num_gt), each
value is used to mark whether this point falls
within a certain gt.
Returns:
tuple[Tensor]:
- neg_loss (Tensor): The negative loss of all points
in the feature map.
"""
num_gts = len(gt_labels)
joint_conf = (cls_score * objectness)
p_neg_weight = torch.ones_like(joint_conf)
if num_gts > 0:
# the order of dinmension would affect the value of
# p_neg_weight, we strictly follow the original
# implementation.
inside_gt_bbox_mask = inside_gt_bbox_mask.permute(1, 0)
ious = ious.permute(1, 0)
foreground_idxs = torch.nonzero(inside_gt_bbox_mask, as_tuple=True)
temp_weight = (1 / (1 - ious[foreground_idxs]).clamp_(EPS))
def normalize(x):
return (x - x.min() + EPS) / (x.max() - x.min() + EPS)
for instance_idx in range(num_gts):
idxs = foreground_idxs[0] == instance_idx
if idxs.any():
temp_weight[idxs] = normalize(temp_weight[idxs])
p_neg_weight[foreground_idxs[1],
gt_labels[foreground_idxs[0]]] = 1 - temp_weight
logits = (joint_conf * p_neg_weight)
neg_loss = (
logits**2 * F.binary_cross_entropy(
logits, torch.zeros_like(logits), reduction='none'))
neg_loss = neg_loss.sum() * self.neg_loss_weight
return neg_loss,
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
def loss(self,
cls_scores,
bbox_preds,
objectnesses,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute loss of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_points * 4.
objectnesses (list[Tensor]): objectness for each scale level, each
is a 4D-tensor, the channel number is num_points * 1.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
all_num_gt = sum([len(item) for item in gt_bboxes])
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
all_level_points = self.prior_generator.grid_priors(
featmap_sizes,
dtype=bbox_preds[0].dtype,
device=bbox_preds[0].device)
inside_gt_bbox_mask_list, bbox_targets_list = self.get_targets(
all_level_points, gt_bboxes)
center_prior_weight_list = []
temp_inside_gt_bbox_mask_list = []
for gt_bboxe, gt_label, inside_gt_bbox_mask in zip(
gt_bboxes, gt_labels, inside_gt_bbox_mask_list):
center_prior_weight, inside_gt_bbox_mask = \
self.center_prior(all_level_points, gt_bboxe, gt_label,
inside_gt_bbox_mask)
center_prior_weight_list.append(center_prior_weight)
temp_inside_gt_bbox_mask_list.append(inside_gt_bbox_mask)
inside_gt_bbox_mask_list = temp_inside_gt_bbox_mask_list
mlvl_points = torch.cat(all_level_points, dim=0)
bbox_preds = levels_to_images(bbox_preds)
cls_scores = levels_to_images(cls_scores)
objectnesses = levels_to_images(objectnesses)
reg_loss_list = []
ious_list = []
num_points = len(mlvl_points)
for bbox_pred, encoded_targets, inside_gt_bbox_mask in zip(
bbox_preds, bbox_targets_list, inside_gt_bbox_mask_list):
temp_num_gt = encoded_targets.size(1)
expand_mlvl_points = mlvl_points[:, None, :].expand(
num_points, temp_num_gt, 2).reshape(-1, 2)
encoded_targets = encoded_targets.reshape(-1, 4)
expand_bbox_pred = bbox_pred[:, None, :].expand(
num_points, temp_num_gt, 4).reshape(-1, 4)
decoded_bbox_preds = self.bbox_coder.decode(
expand_mlvl_points, expand_bbox_pred)
decoded_target_preds = self.bbox_coder.decode(
expand_mlvl_points, encoded_targets)
with torch.no_grad():
ious = bbox_overlaps(
decoded_bbox_preds, decoded_target_preds, is_aligned=True)
ious = ious.reshape(num_points, temp_num_gt)
if temp_num_gt:
ious = ious.max(
dim=-1, keepdim=True).values.repeat(1, temp_num_gt)
else:
ious = ious.new_zeros(num_points, temp_num_gt)
ious[~inside_gt_bbox_mask] = 0
ious_list.append(ious)
loss_bbox = self.loss_bbox(
decoded_bbox_preds,
decoded_target_preds,
weight=None,
reduction_override='none')
reg_loss_list.append(loss_bbox.reshape(num_points, temp_num_gt))
cls_scores = [item.sigmoid() for item in cls_scores]
objectnesses = [item.sigmoid() for item in objectnesses]
pos_loss_list, = multi_apply(self.get_pos_loss_single, cls_scores,
objectnesses, reg_loss_list, gt_labels,
center_prior_weight_list)
pos_avg_factor = reduce_mean(
bbox_pred.new_tensor(all_num_gt)).clamp_(min=1)
pos_loss = sum(pos_loss_list) / pos_avg_factor
neg_loss_list, = multi_apply(self.get_neg_loss_single, cls_scores,
objectnesses, gt_labels, ious_list,
inside_gt_bbox_mask_list)
neg_avg_factor = sum(item.data.sum()
for item in center_prior_weight_list)
neg_avg_factor = reduce_mean(neg_avg_factor).clamp_(min=1)
neg_loss = sum(neg_loss_list) / neg_avg_factor
center_loss = []
for i in range(len(img_metas)):
if inside_gt_bbox_mask_list[i].any():
center_loss.append(
len(gt_bboxes[i]) /
center_prior_weight_list[i].sum().clamp_(min=EPS))
# when width or height of gt_bbox is smaller than stride of p3
else:
center_loss.append(center_prior_weight_list[i].sum() * 0)
center_loss = torch.stack(center_loss).mean() * self.center_loss_weight
# avoid dead lock in DDP
if all_num_gt == 0:
pos_loss = bbox_preds[0].sum() * 0
dummy_center_prior_loss = self.center_prior.mean.sum(
) * 0 + self.center_prior.sigma.sum() * 0
center_loss = objectnesses[0].sum() * 0 + dummy_center_prior_loss
loss = dict(
loss_pos=pos_loss, loss_neg=neg_loss, loss_center=center_loss)
return loss
def get_targets(self, points, gt_bboxes_list):
"""Compute regression targets and each point inside or outside gt_bbox
in multiple images.
Args:
points (list[Tensor]): Points of all fpn level, each has shape
(num_points, 2).
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
Returns:
tuple(list[Tensor]):
- inside_gt_bbox_mask_list (list[Tensor]): Each
Tensor is with bool type and shape of
(num_points, num_gt), each value
is used to mark whether this point falls
within a certain gt.
- concat_lvl_bbox_targets (list[Tensor]): BBox
targets of each level. Each tensor has shape
(num_points, num_gt, 4).
"""
concat_points = torch.cat(points, dim=0)
# the number of points per img, per lvl
inside_gt_bbox_mask_list, bbox_targets_list = multi_apply(
self._get_target_single, gt_bboxes_list, points=concat_points)
return inside_gt_bbox_mask_list, bbox_targets_list
def _get_target_single(self, gt_bboxes, points):
"""Compute regression targets and each point inside or outside gt_bbox
for a single image.
Args:
gt_bboxes (Tensor): gt_bbox of single image, has shape
(num_gt, 4).
points (Tensor): Points of all fpn level, has shape
(num_points, 2).
Returns:
tuple[Tensor]: Containing the following Tensors:
- inside_gt_bbox_mask (Tensor): Bool tensor with shape
(num_points, num_gt), each value is used to mark
whether this point falls within a certain gt.
- bbox_targets (Tensor): BBox targets of each points with
each gt_bboxes, has shape (num_points, num_gt, 4).
"""
num_points = points.size(0)
num_gts = gt_bboxes.size(0)
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
xs, ys = points[:, 0], points[:, 1]
xs = xs[:, None]
ys = ys[:, None]
left = xs - gt_bboxes[..., 0]
right = gt_bboxes[..., 2] - xs
top = ys - gt_bboxes[..., 1]
bottom = gt_bboxes[..., 3] - ys
bbox_targets = torch.stack((left, top, right, bottom), -1)
if num_gts:
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
else:
inside_gt_bbox_mask = bbox_targets.new_zeros((num_points, num_gts),
dtype=torch.bool)
return inside_gt_bbox_mask, bbox_targets
def _get_points_single(self,
featmap_size,
stride,
dtype,
device,
flatten=False):
"""Almost the same as the implementation in fcos, we remove half stride
offset to align with the original implementation.
This function will be deprecated soon.
"""
warnings.warn(
'`_get_points_single` in `AutoAssignHead` will be '
'deprecated soon, we support a multi level point generator now'
'you can get points of a single level feature map '
'with `self.prior_generator.single_level_grid_priors` ')
y, x = super(FCOSHead,
self)._get_points_single(featmap_size, stride, dtype,
device)
points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
dim=-1)
return points
|