File size: 23,096 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import bias_init_with_prob, normal_init
from mmcv.runner import force_fp32

from mmdet.core import multi_apply
from mmdet.core.anchor.point_generator import MlvlPointGenerator
from mmdet.core.bbox import bbox_overlaps
from mmdet.models import HEADS
from mmdet.models.dense_heads.atss_head import reduce_mean
from mmdet.models.dense_heads.fcos_head import FCOSHead
from mmdet.models.dense_heads.paa_head import levels_to_images

EPS = 1e-12


class CenterPrior(nn.Module):
    """Center Weighting module to adjust the category-specific prior
    distributions.

    Args:
        force_topk (bool): When no point falls into gt_bbox, forcibly
            select the k points closest to the center to calculate
            the center prior. Defaults to False.
        topk (int): The number of points used to calculate the
            center prior when no point falls in gt_bbox. Only work when
            force_topk if True. Defaults to 9.
        num_classes (int): The class number of dataset. Defaults to 80.
        strides (tuple[int]): The stride of each input feature map. Defaults
            to (8, 16, 32, 64, 128).
    """

    def __init__(self,
                 force_topk=False,
                 topk=9,
                 num_classes=80,
                 strides=(8, 16, 32, 64, 128)):
        super(CenterPrior, self).__init__()
        self.mean = nn.Parameter(torch.zeros(num_classes, 2))
        self.sigma = nn.Parameter(torch.ones(num_classes, 2))
        self.strides = strides
        self.force_topk = force_topk
        self.topk = topk

    def forward(self, anchor_points_list, gt_bboxes, labels,
                inside_gt_bbox_mask):
        """Get the center prior of each point on the feature map for each
        instance.

        Args:
            anchor_points_list (list[Tensor]): list of coordinate
                of points on feature map. Each with shape
                (num_points, 2).
            gt_bboxes (Tensor): The gt_bboxes with shape of
                (num_gt, 4).
            labels (Tensor): The gt_labels with shape of (num_gt).
            inside_gt_bbox_mask (Tensor): Tensor of bool type,
                with shape of (num_points, num_gt), each
                value is used to mark whether this point falls
                within a certain gt.

        Returns:
            tuple(Tensor):

                - center_prior_weights(Tensor): Float tensor with shape \
                    of (num_points, num_gt). Each value represents \
                    the center weighting coefficient.
                - inside_gt_bbox_mask (Tensor): Tensor of bool type, \
                    with shape of (num_points, num_gt), each \
                    value is used to mark whether this point falls \
                    within a certain gt or is the topk nearest points for \
                    a specific gt_bbox.
        """
        inside_gt_bbox_mask = inside_gt_bbox_mask.clone()
        num_gts = len(labels)
        num_points = sum([len(item) for item in anchor_points_list])
        if num_gts == 0:
            return gt_bboxes.new_zeros(num_points,
                                       num_gts), inside_gt_bbox_mask
        center_prior_list = []
        for slvl_points, stride in zip(anchor_points_list, self.strides):
            # slvl_points: points from single level in FPN, has shape (h*w, 2)
            # single_level_points has shape (h*w, num_gt, 2)
            single_level_points = slvl_points[:, None, :].expand(
                (slvl_points.size(0), len(gt_bboxes), 2))
            gt_center_x = ((gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2)
            gt_center_y = ((gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2)
            gt_center = torch.stack((gt_center_x, gt_center_y), dim=1)
            gt_center = gt_center[None]
            # instance_center has shape (1, num_gt, 2)
            instance_center = self.mean[labels][None]
            # instance_sigma has shape (1, num_gt, 2)
            instance_sigma = self.sigma[labels][None]
            # distance has shape (num_points, num_gt, 2)
            distance = (((single_level_points - gt_center) / float(stride) -
                         instance_center)**2)
            center_prior = torch.exp(-distance /
                                     (2 * instance_sigma**2)).prod(dim=-1)
            center_prior_list.append(center_prior)
        center_prior_weights = torch.cat(center_prior_list, dim=0)

        if self.force_topk:
            gt_inds_no_points_inside = torch.nonzero(
                inside_gt_bbox_mask.sum(0) == 0).reshape(-1)
            if gt_inds_no_points_inside.numel():
                topk_center_index = \
                    center_prior_weights[:, gt_inds_no_points_inside].topk(
                                                             self.topk,
                                                             dim=0)[1]
                temp_mask = inside_gt_bbox_mask[:, gt_inds_no_points_inside]
                inside_gt_bbox_mask[:, gt_inds_no_points_inside] = \
                    torch.scatter(temp_mask,
                                  dim=0,
                                  index=topk_center_index,
                                  src=torch.ones_like(
                                    topk_center_index,
                                    dtype=torch.bool))

        center_prior_weights[~inside_gt_bbox_mask] = 0
        return center_prior_weights, inside_gt_bbox_mask


@HEADS.register_module()
class AutoAssignHead(FCOSHead):
    """AutoAssignHead head used in AutoAssign.

    More details can be found in the `paper
    <https://arxiv.org/abs/2007.03496>`_ .

    Args:
        force_topk (bool): Used in center prior initialization to
            handle extremely small gt. Default is False.
        topk (int): The number of points used to calculate the
            center prior when no point falls in gt_bbox. Only work when
            force_topk if True. Defaults to 9.
        pos_loss_weight (float): The loss weight of positive loss
            and with default value 0.25.
        neg_loss_weight (float): The loss weight of negative loss
            and with default value 0.75.
        center_loss_weight (float): The loss weight of center prior
            loss and with default value 0.75.
    """

    def __init__(self,
                 *args,
                 force_topk=False,
                 topk=9,
                 pos_loss_weight=0.25,
                 neg_loss_weight=0.75,
                 center_loss_weight=0.75,
                 **kwargs):
        super().__init__(*args, conv_bias=True, **kwargs)
        self.center_prior = CenterPrior(
            force_topk=force_topk,
            topk=topk,
            num_classes=self.num_classes,
            strides=self.strides)
        self.pos_loss_weight = pos_loss_weight
        self.neg_loss_weight = neg_loss_weight
        self.center_loss_weight = center_loss_weight
        self.prior_generator = MlvlPointGenerator(self.strides, offset=0)

    def init_weights(self):
        """Initialize weights of the head.

        In particular, we have special initialization for classified conv's and
        regression conv's bias
        """

        super(AutoAssignHead, self).init_weights()
        bias_cls = bias_init_with_prob(0.02)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01, bias=4.0)

    def forward_single(self, x, scale, stride):
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
            tuple: scores for each class, bbox predictions and centerness \
                predictions of input feature maps.
        """
        cls_score, bbox_pred, cls_feat, reg_feat = super(
            FCOSHead, self).forward_single(x)
        centerness = self.conv_centerness(reg_feat)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        # bbox_pred needed for gradient computation has been modified
        # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
        # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
        bbox_pred = bbox_pred.clamp(min=0)
        bbox_pred *= stride
        return cls_score, bbox_pred, centerness

    def get_pos_loss_single(self, cls_score, objectness, reg_loss, gt_labels,
                            center_prior_weights):
        """Calculate the positive loss of all points in gt_bboxes.

        Args:
            cls_score (Tensor): All category scores for each point on
                the feature map. The shape is (num_points, num_class).
            objectness (Tensor): Foreground probability of all points,
                has shape (num_points, 1).
            reg_loss (Tensor): The regression loss of each gt_bbox and each
                prediction box, has shape of (num_points, num_gt).
            gt_labels (Tensor): The zeros based gt_labels of all gt
                with shape of (num_gt,).
            center_prior_weights (Tensor): Float tensor with shape
                of (num_points, num_gt). Each value represents
                the center weighting coefficient.

        Returns:
            tuple[Tensor]:

                - pos_loss (Tensor): The positive loss of all points
                  in the gt_bboxes.
        """
        # p_loc: localization confidence
        p_loc = torch.exp(-reg_loss)
        # p_cls: classification confidence
        p_cls = (cls_score * objectness)[:, gt_labels]
        # p_pos: joint confidence indicator
        p_pos = p_cls * p_loc

        # 3 is a hyper-parameter to control the contributions of high and
        # low confidence locations towards positive losses.
        confidence_weight = torch.exp(p_pos * 3)
        p_pos_weight = (confidence_weight * center_prior_weights) / (
            (confidence_weight * center_prior_weights).sum(
                0, keepdim=True)).clamp(min=EPS)
        reweighted_p_pos = (p_pos * p_pos_weight).sum(0)
        pos_loss = F.binary_cross_entropy(
            reweighted_p_pos,
            torch.ones_like(reweighted_p_pos),
            reduction='none')
        pos_loss = pos_loss.sum() * self.pos_loss_weight
        return pos_loss,

    def get_neg_loss_single(self, cls_score, objectness, gt_labels, ious,
                            inside_gt_bbox_mask):
        """Calculate the negative loss of all points in feature map.

        Args:
            cls_score (Tensor): All category scores for each point on
                the feature map. The shape is (num_points, num_class).
            objectness (Tensor): Foreground probability of all points
                and is shape of (num_points, 1).
            gt_labels (Tensor): The zeros based label of all gt with shape of
                (num_gt).
            ious (Tensor): Float tensor with shape of (num_points, num_gt).
                Each value represent the iou of pred_bbox and gt_bboxes.
            inside_gt_bbox_mask (Tensor): Tensor of bool type,
                with shape of (num_points, num_gt), each
                value is used to mark whether this point falls
                within a certain gt.

        Returns:
            tuple[Tensor]:

                - neg_loss (Tensor): The negative loss of all points
                  in the feature map.
        """
        num_gts = len(gt_labels)
        joint_conf = (cls_score * objectness)
        p_neg_weight = torch.ones_like(joint_conf)
        if num_gts > 0:
            # the order of dinmension would affect the value of
            # p_neg_weight, we strictly follow the original
            # implementation.
            inside_gt_bbox_mask = inside_gt_bbox_mask.permute(1, 0)
            ious = ious.permute(1, 0)

            foreground_idxs = torch.nonzero(inside_gt_bbox_mask, as_tuple=True)
            temp_weight = (1 / (1 - ious[foreground_idxs]).clamp_(EPS))

            def normalize(x):
                return (x - x.min() + EPS) / (x.max() - x.min() + EPS)

            for instance_idx in range(num_gts):
                idxs = foreground_idxs[0] == instance_idx
                if idxs.any():
                    temp_weight[idxs] = normalize(temp_weight[idxs])

            p_neg_weight[foreground_idxs[1],
                         gt_labels[foreground_idxs[0]]] = 1 - temp_weight

        logits = (joint_conf * p_neg_weight)
        neg_loss = (
            logits**2 * F.binary_cross_entropy(
                logits, torch.zeros_like(logits), reduction='none'))
        neg_loss = neg_loss.sum() * self.neg_loss_weight
        return neg_loss,

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'objectnesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             objectnesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * 4.
            objectnesses (list[Tensor]): objectness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        assert len(cls_scores) == len(bbox_preds) == len(objectnesses)
        all_num_gt = sum([len(item) for item in gt_bboxes])
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)
        inside_gt_bbox_mask_list, bbox_targets_list = self.get_targets(
            all_level_points, gt_bboxes)

        center_prior_weight_list = []
        temp_inside_gt_bbox_mask_list = []
        for gt_bboxe, gt_label, inside_gt_bbox_mask in zip(
                gt_bboxes, gt_labels, inside_gt_bbox_mask_list):
            center_prior_weight, inside_gt_bbox_mask = \
                self.center_prior(all_level_points, gt_bboxe, gt_label,
                                  inside_gt_bbox_mask)
            center_prior_weight_list.append(center_prior_weight)
            temp_inside_gt_bbox_mask_list.append(inside_gt_bbox_mask)
        inside_gt_bbox_mask_list = temp_inside_gt_bbox_mask_list
        mlvl_points = torch.cat(all_level_points, dim=0)
        bbox_preds = levels_to_images(bbox_preds)
        cls_scores = levels_to_images(cls_scores)
        objectnesses = levels_to_images(objectnesses)

        reg_loss_list = []
        ious_list = []
        num_points = len(mlvl_points)

        for bbox_pred, encoded_targets, inside_gt_bbox_mask in zip(
                bbox_preds, bbox_targets_list, inside_gt_bbox_mask_list):
            temp_num_gt = encoded_targets.size(1)
            expand_mlvl_points = mlvl_points[:, None, :].expand(
                num_points, temp_num_gt, 2).reshape(-1, 2)
            encoded_targets = encoded_targets.reshape(-1, 4)
            expand_bbox_pred = bbox_pred[:, None, :].expand(
                num_points, temp_num_gt, 4).reshape(-1, 4)
            decoded_bbox_preds = self.bbox_coder.decode(
                expand_mlvl_points, expand_bbox_pred)
            decoded_target_preds = self.bbox_coder.decode(
                expand_mlvl_points, encoded_targets)
            with torch.no_grad():
                ious = bbox_overlaps(
                    decoded_bbox_preds, decoded_target_preds, is_aligned=True)
                ious = ious.reshape(num_points, temp_num_gt)
                if temp_num_gt:
                    ious = ious.max(
                        dim=-1, keepdim=True).values.repeat(1, temp_num_gt)
                else:
                    ious = ious.new_zeros(num_points, temp_num_gt)
                ious[~inside_gt_bbox_mask] = 0
                ious_list.append(ious)
            loss_bbox = self.loss_bbox(
                decoded_bbox_preds,
                decoded_target_preds,
                weight=None,
                reduction_override='none')
            reg_loss_list.append(loss_bbox.reshape(num_points, temp_num_gt))

        cls_scores = [item.sigmoid() for item in cls_scores]
        objectnesses = [item.sigmoid() for item in objectnesses]
        pos_loss_list, = multi_apply(self.get_pos_loss_single, cls_scores,
                                     objectnesses, reg_loss_list, gt_labels,
                                     center_prior_weight_list)
        pos_avg_factor = reduce_mean(
            bbox_pred.new_tensor(all_num_gt)).clamp_(min=1)
        pos_loss = sum(pos_loss_list) / pos_avg_factor

        neg_loss_list, = multi_apply(self.get_neg_loss_single, cls_scores,
                                     objectnesses, gt_labels, ious_list,
                                     inside_gt_bbox_mask_list)
        neg_avg_factor = sum(item.data.sum()
                             for item in center_prior_weight_list)
        neg_avg_factor = reduce_mean(neg_avg_factor).clamp_(min=1)
        neg_loss = sum(neg_loss_list) / neg_avg_factor

        center_loss = []
        for i in range(len(img_metas)):

            if inside_gt_bbox_mask_list[i].any():
                center_loss.append(
                    len(gt_bboxes[i]) /
                    center_prior_weight_list[i].sum().clamp_(min=EPS))
            # when width or height of gt_bbox is smaller than stride of p3
            else:
                center_loss.append(center_prior_weight_list[i].sum() * 0)

        center_loss = torch.stack(center_loss).mean() * self.center_loss_weight

        # avoid dead lock in DDP
        if all_num_gt == 0:
            pos_loss = bbox_preds[0].sum() * 0
            dummy_center_prior_loss = self.center_prior.mean.sum(
            ) * 0 + self.center_prior.sigma.sum() * 0
            center_loss = objectnesses[0].sum() * 0 + dummy_center_prior_loss

        loss = dict(
            loss_pos=pos_loss, loss_neg=neg_loss, loss_center=center_loss)

        return loss

    def get_targets(self, points, gt_bboxes_list):
        """Compute regression targets and each point inside or outside gt_bbox
        in multiple images.

        Args:
            points (list[Tensor]): Points of all fpn level, each has shape
                (num_points, 2).
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
                each has shape (num_gt, 4).

        Returns:
            tuple(list[Tensor]):

                - inside_gt_bbox_mask_list (list[Tensor]): Each
                  Tensor is with bool type and shape of
                  (num_points, num_gt), each value
                  is used to mark whether this point falls
                  within a certain gt.
                - concat_lvl_bbox_targets (list[Tensor]): BBox
                  targets of each level. Each tensor has shape
                  (num_points, num_gt, 4).
        """

        concat_points = torch.cat(points, dim=0)
        # the number of points per img, per lvl
        inside_gt_bbox_mask_list, bbox_targets_list = multi_apply(
            self._get_target_single, gt_bboxes_list, points=concat_points)
        return inside_gt_bbox_mask_list, bbox_targets_list

    def _get_target_single(self, gt_bboxes, points):
        """Compute regression targets and each point inside or outside gt_bbox
        for a single image.

        Args:
            gt_bboxes (Tensor): gt_bbox of single image, has shape
                (num_gt, 4).
            points (Tensor): Points of all fpn level, has shape
                (num_points, 2).

        Returns:
            tuple[Tensor]: Containing the following Tensors:

                - inside_gt_bbox_mask (Tensor): Bool tensor with shape
                  (num_points, num_gt), each value is used to mark
                  whether this point falls within a certain gt.
                - bbox_targets (Tensor): BBox targets of each points with
                  each gt_bboxes, has shape (num_points, num_gt, 4).
        """
        num_points = points.size(0)
        num_gts = gt_bboxes.size(0)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None]
        ys = ys[:, None]
        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)
        if num_gts:
            inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
        else:
            inside_gt_bbox_mask = bbox_targets.new_zeros((num_points, num_gts),
                                                         dtype=torch.bool)

        return inside_gt_bbox_mask, bbox_targets

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Almost the same as the implementation in fcos, we remove half stride
        offset to align with the original implementation.

        This function will be deprecated soon.
        """
        warnings.warn(
            '`_get_points_single` in `AutoAssignHead` will be '
            'deprecated soon, we support a multi level point generator now'
            'you can get points of a single level feature map '
            'with `self.prior_generator.single_level_grid_priors` ')
        y, x = super(FCOSHead,
                     self)._get_points_single(featmap_size, stride, dtype,
                                              device)
        points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
                             dim=-1)
        return points