File size: 48,502 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
# Copyright (c) OpenMMLab. All rights reserved.
from logging import warning
from math import ceil, log

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, bias_init_with_prob
from mmcv.ops import CornerPool, batched_nms
from mmcv.runner import BaseModule, force_fp32

from mmdet.core import multi_apply
from ..builder import HEADS, build_loss
from ..utils import gaussian_radius, gen_gaussian_target
from ..utils.gaussian_target import (gather_feat, get_local_maximum,
                                     get_topk_from_heatmap,
                                     transpose_and_gather_feat)
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


class BiCornerPool(BaseModule):
    """Bidirectional Corner Pooling Module (TopLeft, BottomRight, etc.)

    Args:
        in_channels (int): Input channels of module.
        out_channels (int): Output channels of module.
        feat_channels (int): Feature channels of module.
        directions (list[str]): Directions of two CornerPools.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 in_channels,
                 directions,
                 feat_channels=128,
                 out_channels=128,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 init_cfg=None):
        super(BiCornerPool, self).__init__(init_cfg)
        self.direction1_conv = ConvModule(
            in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg)
        self.direction2_conv = ConvModule(
            in_channels, feat_channels, 3, padding=1, norm_cfg=norm_cfg)

        self.aftpool_conv = ConvModule(
            feat_channels,
            out_channels,
            3,
            padding=1,
            norm_cfg=norm_cfg,
            act_cfg=None)

        self.conv1 = ConvModule(
            in_channels, out_channels, 1, norm_cfg=norm_cfg, act_cfg=None)
        self.conv2 = ConvModule(
            in_channels, out_channels, 3, padding=1, norm_cfg=norm_cfg)

        self.direction1_pool = CornerPool(directions[0])
        self.direction2_pool = CornerPool(directions[1])
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        """Forward features from the upstream network.

        Args:
            x (tensor): Input feature of BiCornerPool.

        Returns:
            conv2 (tensor): Output feature of BiCornerPool.
        """
        direction1_conv = self.direction1_conv(x)
        direction2_conv = self.direction2_conv(x)
        direction1_feat = self.direction1_pool(direction1_conv)
        direction2_feat = self.direction2_pool(direction2_conv)
        aftpool_conv = self.aftpool_conv(direction1_feat + direction2_feat)
        conv1 = self.conv1(x)
        relu = self.relu(aftpool_conv + conv1)
        conv2 = self.conv2(relu)
        return conv2


@HEADS.register_module()
class CornerHead(BaseDenseHead, BBoxTestMixin):
    """Head of CornerNet: Detecting Objects as Paired Keypoints.

    Code is modified from the `official github repo
    <https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/
    kp.py#L73>`_ .

    More details can be found in the `paper
    <https://arxiv.org/abs/1808.01244>`_ .

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        num_feat_levels (int): Levels of feature from the previous module. 2
            for HourglassNet-104 and 1 for HourglassNet-52. Because
            HourglassNet-104 outputs the final feature and intermediate
            supervision feature and HourglassNet-52 only outputs the final
            feature. Default: 2.
        corner_emb_channels (int): Channel of embedding vector. Default: 1.
        train_cfg (dict | None): Training config. Useless in CornerHead,
            but we keep this variable for SingleStageDetector. Default: None.
        test_cfg (dict | None): Testing config of CornerHead. Default: None.
        loss_heatmap (dict | None): Config of corner heatmap loss. Default:
            GaussianFocalLoss.
        loss_embedding (dict | None): Config of corner embedding loss. Default:
            AssociativeEmbeddingLoss.
        loss_offset (dict | None): Config of corner offset loss. Default:
            SmoothL1Loss.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 num_feat_levels=2,
                 corner_emb_channels=1,
                 train_cfg=None,
                 test_cfg=None,
                 loss_heatmap=dict(
                     type='GaussianFocalLoss',
                     alpha=2.0,
                     gamma=4.0,
                     loss_weight=1),
                 loss_embedding=dict(
                     type='AssociativeEmbeddingLoss',
                     pull_weight=0.25,
                     push_weight=0.25),
                 loss_offset=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=1),
                 init_cfg=None):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super(CornerHead, self).__init__(init_cfg)
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.corner_emb_channels = corner_emb_channels
        self.with_corner_emb = self.corner_emb_channels > 0
        self.corner_offset_channels = 2
        self.num_feat_levels = num_feat_levels
        self.loss_heatmap = build_loss(
            loss_heatmap) if loss_heatmap is not None else None
        self.loss_embedding = build_loss(
            loss_embedding) if loss_embedding is not None else None
        self.loss_offset = build_loss(
            loss_offset) if loss_offset is not None else None
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.fp16_enabled = False
        self._init_layers()

    def _make_layers(self, out_channels, in_channels=256, feat_channels=256):
        """Initialize conv sequential for CornerHead."""
        return nn.Sequential(
            ConvModule(in_channels, feat_channels, 3, padding=1),
            ConvModule(
                feat_channels, out_channels, 1, norm_cfg=None, act_cfg=None))

    def _init_corner_kpt_layers(self):
        """Initialize corner keypoint layers.

        Including corner heatmap branch and corner offset branch. Each branch
        has two parts: prefix `tl_` for top-left and `br_` for bottom-right.
        """
        self.tl_pool, self.br_pool = nn.ModuleList(), nn.ModuleList()
        self.tl_heat, self.br_heat = nn.ModuleList(), nn.ModuleList()
        self.tl_off, self.br_off = nn.ModuleList(), nn.ModuleList()

        for _ in range(self.num_feat_levels):
            self.tl_pool.append(
                BiCornerPool(
                    self.in_channels, ['top', 'left'],
                    out_channels=self.in_channels))
            self.br_pool.append(
                BiCornerPool(
                    self.in_channels, ['bottom', 'right'],
                    out_channels=self.in_channels))

            self.tl_heat.append(
                self._make_layers(
                    out_channels=self.num_classes,
                    in_channels=self.in_channels))
            self.br_heat.append(
                self._make_layers(
                    out_channels=self.num_classes,
                    in_channels=self.in_channels))

            self.tl_off.append(
                self._make_layers(
                    out_channels=self.corner_offset_channels,
                    in_channels=self.in_channels))
            self.br_off.append(
                self._make_layers(
                    out_channels=self.corner_offset_channels,
                    in_channels=self.in_channels))

    def _init_corner_emb_layers(self):
        """Initialize corner embedding layers.

        Only include corner embedding branch with two parts: prefix `tl_` for
        top-left and `br_` for bottom-right.
        """
        self.tl_emb, self.br_emb = nn.ModuleList(), nn.ModuleList()

        for _ in range(self.num_feat_levels):
            self.tl_emb.append(
                self._make_layers(
                    out_channels=self.corner_emb_channels,
                    in_channels=self.in_channels))
            self.br_emb.append(
                self._make_layers(
                    out_channels=self.corner_emb_channels,
                    in_channels=self.in_channels))

    def _init_layers(self):
        """Initialize layers for CornerHead.

        Including two parts: corner keypoint layers and corner embedding layers
        """
        self._init_corner_kpt_layers()
        if self.with_corner_emb:
            self._init_corner_emb_layers()

    def init_weights(self):
        super(CornerHead, self).init_weights()
        bias_init = bias_init_with_prob(0.1)
        for i in range(self.num_feat_levels):
            # The initialization of parameters are different between
            # nn.Conv2d and ConvModule. Our experiments show that
            # using the original initialization of nn.Conv2d increases
            # the final mAP by about 0.2%
            self.tl_heat[i][-1].conv.reset_parameters()
            self.tl_heat[i][-1].conv.bias.data.fill_(bias_init)
            self.br_heat[i][-1].conv.reset_parameters()
            self.br_heat[i][-1].conv.bias.data.fill_(bias_init)
            self.tl_off[i][-1].conv.reset_parameters()
            self.br_off[i][-1].conv.reset_parameters()
            if self.with_corner_emb:
                self.tl_emb[i][-1].conv.reset_parameters()
                self.br_emb[i][-1].conv.reset_parameters()

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: Usually a tuple of corner heatmaps, offset heatmaps and
            embedding heatmaps.
                - tl_heats (list[Tensor]): Top-left corner heatmaps for all
                  levels, each is a 4D-tensor, the channels number is
                  num_classes.
                - br_heats (list[Tensor]): Bottom-right corner heatmaps for all
                  levels, each is a 4D-tensor, the channels number is
                  num_classes.
                - tl_embs (list[Tensor] | list[None]): Top-left embedding
                  heatmaps for all levels, each is a 4D-tensor or None.
                  If not None, the channels number is corner_emb_channels.
                - br_embs (list[Tensor] | list[None]): Bottom-right embedding
                  heatmaps for all levels, each is a 4D-tensor or None.
                  If not None, the channels number is corner_emb_channels.
                - tl_offs (list[Tensor]): Top-left offset heatmaps for all
                  levels, each is a 4D-tensor. The channels number is
                  corner_offset_channels.
                - br_offs (list[Tensor]): Bottom-right offset heatmaps for all
                  levels, each is a 4D-tensor. The channels number is
                  corner_offset_channels.
        """
        lvl_ind = list(range(self.num_feat_levels))
        return multi_apply(self.forward_single, feats, lvl_ind)

    def forward_single(self, x, lvl_ind, return_pool=False):
        """Forward feature of a single level.

        Args:
            x (Tensor): Feature of a single level.
            lvl_ind (int): Level index of current feature.
            return_pool (bool): Return corner pool feature or not.

        Returns:
            tuple[Tensor]: A tuple of CornerHead's output for current feature
            level. Containing the following Tensors:

                - tl_heat (Tensor): Predicted top-left corner heatmap.
                - br_heat (Tensor): Predicted bottom-right corner heatmap.
                - tl_emb (Tensor | None): Predicted top-left embedding heatmap.
                  None for `self.with_corner_emb == False`.
                - br_emb (Tensor | None): Predicted bottom-right embedding
                  heatmap. None for `self.with_corner_emb == False`.
                - tl_off (Tensor): Predicted top-left offset heatmap.
                - br_off (Tensor): Predicted bottom-right offset heatmap.
                - tl_pool (Tensor): Top-left corner pool feature. Not must
                  have.
                - br_pool (Tensor): Bottom-right corner pool feature. Not must
                  have.
        """
        tl_pool = self.tl_pool[lvl_ind](x)
        tl_heat = self.tl_heat[lvl_ind](tl_pool)
        br_pool = self.br_pool[lvl_ind](x)
        br_heat = self.br_heat[lvl_ind](br_pool)

        tl_emb, br_emb = None, None
        if self.with_corner_emb:
            tl_emb = self.tl_emb[lvl_ind](tl_pool)
            br_emb = self.br_emb[lvl_ind](br_pool)

        tl_off = self.tl_off[lvl_ind](tl_pool)
        br_off = self.br_off[lvl_ind](br_pool)

        result_list = [tl_heat, br_heat, tl_emb, br_emb, tl_off, br_off]
        if return_pool:
            result_list.append(tl_pool)
            result_list.append(br_pool)

        return result_list

    def get_targets(self,
                    gt_bboxes,
                    gt_labels,
                    feat_shape,
                    img_shape,
                    with_corner_emb=False,
                    with_guiding_shift=False,
                    with_centripetal_shift=False):
        """Generate corner targets.

        Including corner heatmap, corner offset.

        Optional: corner embedding, corner guiding shift, centripetal shift.

        For CornerNet, we generate corner heatmap, corner offset and corner
        embedding from this function.

        For CentripetalNet, we generate corner heatmap, corner offset, guiding
        shift and centripetal shift from this function.

        Args:
            gt_bboxes (list[Tensor]): Ground truth bboxes of each image, each
                has shape (num_gt, 4).
            gt_labels (list[Tensor]): Ground truth labels of each box, each has
                shape (num_gt,).
            feat_shape (list[int]): Shape of output feature,
                [batch, channel, height, width].
            img_shape (list[int]): Shape of input image,
                [height, width, channel].
            with_corner_emb (bool): Generate corner embedding target or not.
                Default: False.
            with_guiding_shift (bool): Generate guiding shift target or not.
                Default: False.
            with_centripetal_shift (bool): Generate centripetal shift target or
                not. Default: False.

        Returns:
            dict: Ground truth of corner heatmap, corner offset, corner
            embedding, guiding shift and centripetal shift. Containing the
            following keys:

                - topleft_heatmap (Tensor): Ground truth top-left corner
                  heatmap.
                - bottomright_heatmap (Tensor): Ground truth bottom-right
                  corner heatmap.
                - topleft_offset (Tensor): Ground truth top-left corner offset.
                - bottomright_offset (Tensor): Ground truth bottom-right corner
                  offset.
                - corner_embedding (list[list[list[int]]]): Ground truth corner
                  embedding. Not must have.
                - topleft_guiding_shift (Tensor): Ground truth top-left corner
                  guiding shift. Not must have.
                - bottomright_guiding_shift (Tensor): Ground truth bottom-right
                  corner guiding shift. Not must have.
                - topleft_centripetal_shift (Tensor): Ground truth top-left
                  corner centripetal shift. Not must have.
                - bottomright_centripetal_shift (Tensor): Ground truth
                  bottom-right corner centripetal shift. Not must have.
        """
        batch_size, _, height, width = feat_shape
        img_h, img_w = img_shape[:2]

        width_ratio = float(width / img_w)
        height_ratio = float(height / img_h)

        gt_tl_heatmap = gt_bboxes[-1].new_zeros(
            [batch_size, self.num_classes, height, width])
        gt_br_heatmap = gt_bboxes[-1].new_zeros(
            [batch_size, self.num_classes, height, width])
        gt_tl_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width])
        gt_br_offset = gt_bboxes[-1].new_zeros([batch_size, 2, height, width])

        if with_corner_emb:
            match = []

        # Guiding shift is a kind of offset, from center to corner
        if with_guiding_shift:
            gt_tl_guiding_shift = gt_bboxes[-1].new_zeros(
                [batch_size, 2, height, width])
            gt_br_guiding_shift = gt_bboxes[-1].new_zeros(
                [batch_size, 2, height, width])
        # Centripetal shift is also a kind of offset, from center to corner
        # and normalized by log.
        if with_centripetal_shift:
            gt_tl_centripetal_shift = gt_bboxes[-1].new_zeros(
                [batch_size, 2, height, width])
            gt_br_centripetal_shift = gt_bboxes[-1].new_zeros(
                [batch_size, 2, height, width])

        for batch_id in range(batch_size):
            # Ground truth of corner embedding per image is a list of coord set
            corner_match = []
            for box_id in range(len(gt_labels[batch_id])):
                left, top, right, bottom = gt_bboxes[batch_id][box_id]
                center_x = (left + right) / 2.0
                center_y = (top + bottom) / 2.0
                label = gt_labels[batch_id][box_id]

                # Use coords in the feature level to generate ground truth
                scale_left = left * width_ratio
                scale_right = right * width_ratio
                scale_top = top * height_ratio
                scale_bottom = bottom * height_ratio
                scale_center_x = center_x * width_ratio
                scale_center_y = center_y * height_ratio

                # Int coords on feature map/ground truth tensor
                left_idx = int(min(scale_left, width - 1))
                right_idx = int(min(scale_right, width - 1))
                top_idx = int(min(scale_top, height - 1))
                bottom_idx = int(min(scale_bottom, height - 1))

                # Generate gaussian heatmap
                scale_box_width = ceil(scale_right - scale_left)
                scale_box_height = ceil(scale_bottom - scale_top)
                radius = gaussian_radius((scale_box_height, scale_box_width),
                                         min_overlap=0.3)
                radius = max(0, int(radius))
                gt_tl_heatmap[batch_id, label] = gen_gaussian_target(
                    gt_tl_heatmap[batch_id, label], [left_idx, top_idx],
                    radius)
                gt_br_heatmap[batch_id, label] = gen_gaussian_target(
                    gt_br_heatmap[batch_id, label], [right_idx, bottom_idx],
                    radius)

                # Generate corner offset
                left_offset = scale_left - left_idx
                top_offset = scale_top - top_idx
                right_offset = scale_right - right_idx
                bottom_offset = scale_bottom - bottom_idx
                gt_tl_offset[batch_id, 0, top_idx, left_idx] = left_offset
                gt_tl_offset[batch_id, 1, top_idx, left_idx] = top_offset
                gt_br_offset[batch_id, 0, bottom_idx, right_idx] = right_offset
                gt_br_offset[batch_id, 1, bottom_idx,
                             right_idx] = bottom_offset

                # Generate corner embedding
                if with_corner_emb:
                    corner_match.append([[top_idx, left_idx],
                                         [bottom_idx, right_idx]])
                # Generate guiding shift
                if with_guiding_shift:
                    gt_tl_guiding_shift[batch_id, 0, top_idx,
                                        left_idx] = scale_center_x - left_idx
                    gt_tl_guiding_shift[batch_id, 1, top_idx,
                                        left_idx] = scale_center_y - top_idx
                    gt_br_guiding_shift[batch_id, 0, bottom_idx,
                                        right_idx] = right_idx - scale_center_x
                    gt_br_guiding_shift[
                        batch_id, 1, bottom_idx,
                        right_idx] = bottom_idx - scale_center_y
                # Generate centripetal shift
                if with_centripetal_shift:
                    gt_tl_centripetal_shift[batch_id, 0, top_idx,
                                            left_idx] = log(scale_center_x -
                                                            scale_left)
                    gt_tl_centripetal_shift[batch_id, 1, top_idx,
                                            left_idx] = log(scale_center_y -
                                                            scale_top)
                    gt_br_centripetal_shift[batch_id, 0, bottom_idx,
                                            right_idx] = log(scale_right -
                                                             scale_center_x)
                    gt_br_centripetal_shift[batch_id, 1, bottom_idx,
                                            right_idx] = log(scale_bottom -
                                                             scale_center_y)

            if with_corner_emb:
                match.append(corner_match)

        target_result = dict(
            topleft_heatmap=gt_tl_heatmap,
            topleft_offset=gt_tl_offset,
            bottomright_heatmap=gt_br_heatmap,
            bottomright_offset=gt_br_offset)

        if with_corner_emb:
            target_result.update(corner_embedding=match)
        if with_guiding_shift:
            target_result.update(
                topleft_guiding_shift=gt_tl_guiding_shift,
                bottomright_guiding_shift=gt_br_guiding_shift)
        if with_centripetal_shift:
            target_result.update(
                topleft_centripetal_shift=gt_tl_centripetal_shift,
                bottomright_centripetal_shift=gt_br_centripetal_shift)

        return target_result

    @force_fp32()
    def loss(self,
             tl_heats,
             br_heats,
             tl_embs,
             br_embs,
             tl_offs,
             br_offs,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            tl_heats (list[Tensor]): Top-left corner heatmaps for each level
                with shape (N, num_classes, H, W).
            br_heats (list[Tensor]): Bottom-right corner heatmaps for each
                level with shape (N, num_classes, H, W).
            tl_embs (list[Tensor]): Top-left corner embeddings for each level
                with shape (N, corner_emb_channels, H, W).
            br_embs (list[Tensor]): Bottom-right corner embeddings for each
                level with shape (N, corner_emb_channels, H, W).
            tl_offs (list[Tensor]): Top-left corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            br_offs (list[Tensor]): Bottom-right corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [left, top, right, bottom] format.
            gt_labels (list[Tensor]): Class indices corresponding to each box.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (list[Tensor] | None): Specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components. Containing the
            following losses:

                - det_loss (list[Tensor]): Corner keypoint losses of all
                  feature levels.
                - pull_loss (list[Tensor]): Part one of AssociativeEmbedding
                  losses of all feature levels.
                - push_loss (list[Tensor]): Part two of AssociativeEmbedding
                  losses of all feature levels.
                - off_loss (list[Tensor]): Corner offset losses of all feature
                  levels.
        """
        targets = self.get_targets(
            gt_bboxes,
            gt_labels,
            tl_heats[-1].shape,
            img_metas[0]['pad_shape'],
            with_corner_emb=self.with_corner_emb)
        mlvl_targets = [targets for _ in range(self.num_feat_levels)]
        det_losses, pull_losses, push_losses, off_losses = multi_apply(
            self.loss_single, tl_heats, br_heats, tl_embs, br_embs, tl_offs,
            br_offs, mlvl_targets)
        loss_dict = dict(det_loss=det_losses, off_loss=off_losses)
        if self.with_corner_emb:
            loss_dict.update(pull_loss=pull_losses, push_loss=push_losses)
        return loss_dict

    def loss_single(self, tl_hmp, br_hmp, tl_emb, br_emb, tl_off, br_off,
                    targets):
        """Compute losses for single level.

        Args:
            tl_hmp (Tensor): Top-left corner heatmap for current level with
                shape (N, num_classes, H, W).
            br_hmp (Tensor): Bottom-right corner heatmap for current level with
                shape (N, num_classes, H, W).
            tl_emb (Tensor): Top-left corner embedding for current level with
                shape (N, corner_emb_channels, H, W).
            br_emb (Tensor): Bottom-right corner embedding for current level
                with shape (N, corner_emb_channels, H, W).
            tl_off (Tensor): Top-left corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            br_off (Tensor): Bottom-right corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            targets (dict): Corner target generated by `get_targets`.

        Returns:
            tuple[torch.Tensor]: Losses of the head's different branches
            containing the following losses:

                - det_loss (Tensor): Corner keypoint loss.
                - pull_loss (Tensor): Part one of AssociativeEmbedding loss.
                - push_loss (Tensor): Part two of AssociativeEmbedding loss.
                - off_loss (Tensor): Corner offset loss.
        """
        gt_tl_hmp = targets['topleft_heatmap']
        gt_br_hmp = targets['bottomright_heatmap']
        gt_tl_off = targets['topleft_offset']
        gt_br_off = targets['bottomright_offset']
        gt_embedding = targets['corner_embedding']

        # Detection loss
        tl_det_loss = self.loss_heatmap(
            tl_hmp.sigmoid(),
            gt_tl_hmp,
            avg_factor=max(1,
                           gt_tl_hmp.eq(1).sum()))
        br_det_loss = self.loss_heatmap(
            br_hmp.sigmoid(),
            gt_br_hmp,
            avg_factor=max(1,
                           gt_br_hmp.eq(1).sum()))
        det_loss = (tl_det_loss + br_det_loss) / 2.0

        # AssociativeEmbedding loss
        if self.with_corner_emb and self.loss_embedding is not None:
            pull_loss, push_loss = self.loss_embedding(tl_emb, br_emb,
                                                       gt_embedding)
        else:
            pull_loss, push_loss = None, None

        # Offset loss
        # We only compute the offset loss at the real corner position.
        # The value of real corner would be 1 in heatmap ground truth.
        # The mask is computed in class agnostic mode and its shape is
        # batch * 1 * width * height.
        tl_off_mask = gt_tl_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
            gt_tl_hmp)
        br_off_mask = gt_br_hmp.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
            gt_br_hmp)
        tl_off_loss = self.loss_offset(
            tl_off,
            gt_tl_off,
            tl_off_mask,
            avg_factor=max(1, tl_off_mask.sum()))
        br_off_loss = self.loss_offset(
            br_off,
            gt_br_off,
            br_off_mask,
            avg_factor=max(1, br_off_mask.sum()))

        off_loss = (tl_off_loss + br_off_loss) / 2.0

        return det_loss, pull_loss, push_loss, off_loss

    @force_fp32()
    def get_bboxes(self,
                   tl_heats,
                   br_heats,
                   tl_embs,
                   br_embs,
                   tl_offs,
                   br_offs,
                   img_metas,
                   rescale=False,
                   with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            tl_heats (list[Tensor]): Top-left corner heatmaps for each level
                with shape (N, num_classes, H, W).
            br_heats (list[Tensor]): Bottom-right corner heatmaps for each
                level with shape (N, num_classes, H, W).
            tl_embs (list[Tensor]): Top-left corner embeddings for each level
                with shape (N, corner_emb_channels, H, W).
            br_embs (list[Tensor]): Bottom-right corner embeddings for each
                level with shape (N, corner_emb_channels, H, W).
            tl_offs (list[Tensor]): Top-left corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            br_offs (list[Tensor]): Bottom-right corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
        """
        assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(img_metas)
        result_list = []
        for img_id in range(len(img_metas)):
            result_list.append(
                self._get_bboxes_single(
                    tl_heats[-1][img_id:img_id + 1, :],
                    br_heats[-1][img_id:img_id + 1, :],
                    tl_offs[-1][img_id:img_id + 1, :],
                    br_offs[-1][img_id:img_id + 1, :],
                    img_metas[img_id],
                    tl_emb=tl_embs[-1][img_id:img_id + 1, :],
                    br_emb=br_embs[-1][img_id:img_id + 1, :],
                    rescale=rescale,
                    with_nms=with_nms))

        return result_list

    def _get_bboxes_single(self,
                           tl_heat,
                           br_heat,
                           tl_off,
                           br_off,
                           img_meta,
                           tl_emb=None,
                           br_emb=None,
                           tl_centripetal_shift=None,
                           br_centripetal_shift=None,
                           rescale=False,
                           with_nms=True):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            tl_heat (Tensor): Top-left corner heatmap for current level with
                shape (N, num_classes, H, W).
            br_heat (Tensor): Bottom-right corner heatmap for current level
                with shape (N, num_classes, H, W).
            tl_off (Tensor): Top-left corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            br_off (Tensor): Bottom-right corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            img_meta (dict): Meta information of current image, e.g.,
                image size, scaling factor, etc.
            tl_emb (Tensor): Top-left corner embedding for current level with
                shape (N, corner_emb_channels, H, W).
            br_emb (Tensor): Bottom-right corner embedding for current level
                with shape (N, corner_emb_channels, H, W).
            tl_centripetal_shift: Top-left corner's centripetal shift for
                current level with shape (N, 2, H, W).
            br_centripetal_shift: Bottom-right corner's centripetal shift for
                current level with shape (N, 2, H, W).
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
        """
        if isinstance(img_meta, (list, tuple)):
            img_meta = img_meta[0]

        batch_bboxes, batch_scores, batch_clses = self.decode_heatmap(
            tl_heat=tl_heat.sigmoid(),
            br_heat=br_heat.sigmoid(),
            tl_off=tl_off,
            br_off=br_off,
            tl_emb=tl_emb,
            br_emb=br_emb,
            tl_centripetal_shift=tl_centripetal_shift,
            br_centripetal_shift=br_centripetal_shift,
            img_meta=img_meta,
            k=self.test_cfg.corner_topk,
            kernel=self.test_cfg.local_maximum_kernel,
            distance_threshold=self.test_cfg.distance_threshold)

        if rescale:
            batch_bboxes /= batch_bboxes.new_tensor(img_meta['scale_factor'])

        bboxes = batch_bboxes.view([-1, 4])
        scores = batch_scores.view(-1)
        clses = batch_clses.view(-1)

        detections = torch.cat([bboxes, scores.unsqueeze(-1)], -1)
        keepinds = (detections[:, -1] > -0.1)
        detections = detections[keepinds]
        labels = clses[keepinds]

        if with_nms:
            detections, labels = self._bboxes_nms(detections, labels,
                                                  self.test_cfg)

        return detections, labels

    def _bboxes_nms(self, bboxes, labels, cfg):
        if 'nms_cfg' in cfg:
            warning.warn('nms_cfg in test_cfg will be deprecated. '
                         'Please rename it as nms')
        if 'nms' not in cfg:
            cfg.nms = cfg.nms_cfg

        if labels.numel() > 0:
            max_num = cfg.max_per_img
            bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:,
                                                             -1].contiguous(),
                                       labels, cfg.nms)
            if max_num > 0:
                bboxes = bboxes[:max_num]
                labels = labels[keep][:max_num]

        return bboxes, labels

    def decode_heatmap(self,
                       tl_heat,
                       br_heat,
                       tl_off,
                       br_off,
                       tl_emb=None,
                       br_emb=None,
                       tl_centripetal_shift=None,
                       br_centripetal_shift=None,
                       img_meta=None,
                       k=100,
                       kernel=3,
                       distance_threshold=0.5,
                       num_dets=1000):
        """Transform outputs for a single batch item into raw bbox predictions.

        Args:
            tl_heat (Tensor): Top-left corner heatmap for current level with
                shape (N, num_classes, H, W).
            br_heat (Tensor): Bottom-right corner heatmap for current level
                with shape (N, num_classes, H, W).
            tl_off (Tensor): Top-left corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            br_off (Tensor): Bottom-right corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            tl_emb (Tensor | None): Top-left corner embedding for current
                level with shape (N, corner_emb_channels, H, W).
            br_emb (Tensor | None): Bottom-right corner embedding for current
                level with shape (N, corner_emb_channels, H, W).
            tl_centripetal_shift (Tensor | None): Top-left centripetal shift
                for current level with shape (N, 2, H, W).
            br_centripetal_shift (Tensor | None): Bottom-right centripetal
                shift for current level with shape (N, 2, H, W).
            img_meta (dict): Meta information of current image, e.g.,
                image size, scaling factor, etc.
            k (int): Get top k corner keypoints from heatmap.
            kernel (int): Max pooling kernel for extract local maximum pixels.
            distance_threshold (float): Distance threshold. Top-left and
                bottom-right corner keypoints with feature distance less than
                the threshold will be regarded as keypoints from same object.
            num_dets (int): Num of raw boxes before doing nms.

        Returns:
            tuple[torch.Tensor]: Decoded output of CornerHead, containing the
            following Tensors:

            - bboxes (Tensor): Coords of each box.
            - scores (Tensor): Scores of each box.
            - clses (Tensor): Categories of each box.
        """
        with_embedding = tl_emb is not None and br_emb is not None
        with_centripetal_shift = (
            tl_centripetal_shift is not None
            and br_centripetal_shift is not None)
        assert with_embedding + with_centripetal_shift == 1
        batch, _, height, width = tl_heat.size()
        if torch.onnx.is_in_onnx_export():
            inp_h, inp_w = img_meta['pad_shape_for_onnx'][:2]
        else:
            inp_h, inp_w, _ = img_meta['pad_shape']

        # perform nms on heatmaps
        tl_heat = get_local_maximum(tl_heat, kernel=kernel)
        br_heat = get_local_maximum(br_heat, kernel=kernel)

        tl_scores, tl_inds, tl_clses, tl_ys, tl_xs = get_topk_from_heatmap(
            tl_heat, k=k)
        br_scores, br_inds, br_clses, br_ys, br_xs = get_topk_from_heatmap(
            br_heat, k=k)

        # We use repeat instead of expand here because expand is a
        # shallow-copy function. Thus it could cause unexpected testing result
        # sometimes. Using expand will decrease about 10% mAP during testing
        # compared to repeat.
        tl_ys = tl_ys.view(batch, k, 1).repeat(1, 1, k)
        tl_xs = tl_xs.view(batch, k, 1).repeat(1, 1, k)
        br_ys = br_ys.view(batch, 1, k).repeat(1, k, 1)
        br_xs = br_xs.view(batch, 1, k).repeat(1, k, 1)

        tl_off = transpose_and_gather_feat(tl_off, tl_inds)
        tl_off = tl_off.view(batch, k, 1, 2)
        br_off = transpose_and_gather_feat(br_off, br_inds)
        br_off = br_off.view(batch, 1, k, 2)

        tl_xs = tl_xs + tl_off[..., 0]
        tl_ys = tl_ys + tl_off[..., 1]
        br_xs = br_xs + br_off[..., 0]
        br_ys = br_ys + br_off[..., 1]

        if with_centripetal_shift:
            tl_centripetal_shift = transpose_and_gather_feat(
                tl_centripetal_shift, tl_inds).view(batch, k, 1, 2).exp()
            br_centripetal_shift = transpose_and_gather_feat(
                br_centripetal_shift, br_inds).view(batch, 1, k, 2).exp()

            tl_ctxs = tl_xs + tl_centripetal_shift[..., 0]
            tl_ctys = tl_ys + tl_centripetal_shift[..., 1]
            br_ctxs = br_xs - br_centripetal_shift[..., 0]
            br_ctys = br_ys - br_centripetal_shift[..., 1]

        # all possible boxes based on top k corners (ignoring class)
        tl_xs *= (inp_w / width)
        tl_ys *= (inp_h / height)
        br_xs *= (inp_w / width)
        br_ys *= (inp_h / height)

        if with_centripetal_shift:
            tl_ctxs *= (inp_w / width)
            tl_ctys *= (inp_h / height)
            br_ctxs *= (inp_w / width)
            br_ctys *= (inp_h / height)

        x_off, y_off = 0, 0  # no crop
        if not torch.onnx.is_in_onnx_export():
            # since `RandomCenterCropPad` is done on CPU with numpy and it's
            # not dynamic traceable when exporting to ONNX, thus 'border'
            # does not appears as key in 'img_meta'. As a tmp solution,
            # we move this 'border' handle part to the postprocess after
            # finished exporting to ONNX, which is handle in
            # `mmdet/core/export/model_wrappers.py`. Though difference between
            # pytorch and exported onnx model, it might be ignored since
            # comparable performance is achieved between them (e.g. 40.4 vs
            # 40.6 on COCO val2017, for CornerNet without test-time flip)
            if 'border' in img_meta:
                x_off = img_meta['border'][2]
                y_off = img_meta['border'][0]

        tl_xs -= x_off
        tl_ys -= y_off
        br_xs -= x_off
        br_ys -= y_off

        zeros = tl_xs.new_zeros(*tl_xs.size())
        tl_xs = torch.where(tl_xs > 0.0, tl_xs, zeros)
        tl_ys = torch.where(tl_ys > 0.0, tl_ys, zeros)
        br_xs = torch.where(br_xs > 0.0, br_xs, zeros)
        br_ys = torch.where(br_ys > 0.0, br_ys, zeros)

        bboxes = torch.stack((tl_xs, tl_ys, br_xs, br_ys), dim=3)
        area_bboxes = ((br_xs - tl_xs) * (br_ys - tl_ys)).abs()

        if with_centripetal_shift:
            tl_ctxs -= x_off
            tl_ctys -= y_off
            br_ctxs -= x_off
            br_ctys -= y_off

            tl_ctxs *= tl_ctxs.gt(0.0).type_as(tl_ctxs)
            tl_ctys *= tl_ctys.gt(0.0).type_as(tl_ctys)
            br_ctxs *= br_ctxs.gt(0.0).type_as(br_ctxs)
            br_ctys *= br_ctys.gt(0.0).type_as(br_ctys)

            ct_bboxes = torch.stack((tl_ctxs, tl_ctys, br_ctxs, br_ctys),
                                    dim=3)
            area_ct_bboxes = ((br_ctxs - tl_ctxs) * (br_ctys - tl_ctys)).abs()

            rcentral = torch.zeros_like(ct_bboxes)
            # magic nums from paper section 4.1
            mu = torch.ones_like(area_bboxes) / 2.4
            mu[area_bboxes > 3500] = 1 / 2.1  # large bbox have smaller mu

            bboxes_center_x = (bboxes[..., 0] + bboxes[..., 2]) / 2
            bboxes_center_y = (bboxes[..., 1] + bboxes[..., 3]) / 2
            rcentral[..., 0] = bboxes_center_x - mu * (bboxes[..., 2] -
                                                       bboxes[..., 0]) / 2
            rcentral[..., 1] = bboxes_center_y - mu * (bboxes[..., 3] -
                                                       bboxes[..., 1]) / 2
            rcentral[..., 2] = bboxes_center_x + mu * (bboxes[..., 2] -
                                                       bboxes[..., 0]) / 2
            rcentral[..., 3] = bboxes_center_y + mu * (bboxes[..., 3] -
                                                       bboxes[..., 1]) / 2
            area_rcentral = ((rcentral[..., 2] - rcentral[..., 0]) *
                             (rcentral[..., 3] - rcentral[..., 1])).abs()
            dists = area_ct_bboxes / area_rcentral

            tl_ctx_inds = (ct_bboxes[..., 0] <= rcentral[..., 0]) | (
                ct_bboxes[..., 0] >= rcentral[..., 2])
            tl_cty_inds = (ct_bboxes[..., 1] <= rcentral[..., 1]) | (
                ct_bboxes[..., 1] >= rcentral[..., 3])
            br_ctx_inds = (ct_bboxes[..., 2] <= rcentral[..., 0]) | (
                ct_bboxes[..., 2] >= rcentral[..., 2])
            br_cty_inds = (ct_bboxes[..., 3] <= rcentral[..., 1]) | (
                ct_bboxes[..., 3] >= rcentral[..., 3])

        if with_embedding:
            tl_emb = transpose_and_gather_feat(tl_emb, tl_inds)
            tl_emb = tl_emb.view(batch, k, 1)
            br_emb = transpose_and_gather_feat(br_emb, br_inds)
            br_emb = br_emb.view(batch, 1, k)
            dists = torch.abs(tl_emb - br_emb)

        tl_scores = tl_scores.view(batch, k, 1).repeat(1, 1, k)
        br_scores = br_scores.view(batch, 1, k).repeat(1, k, 1)

        scores = (tl_scores + br_scores) / 2  # scores for all possible boxes

        # tl and br should have same class
        tl_clses = tl_clses.view(batch, k, 1).repeat(1, 1, k)
        br_clses = br_clses.view(batch, 1, k).repeat(1, k, 1)
        cls_inds = (tl_clses != br_clses)

        # reject boxes based on distances
        dist_inds = dists > distance_threshold

        # reject boxes based on widths and heights
        width_inds = (br_xs <= tl_xs)
        height_inds = (br_ys <= tl_ys)

        # No use `scores[cls_inds]`, instead we use `torch.where` here.
        # Since only 1-D indices with type 'tensor(bool)' are supported
        # when exporting to ONNX, any other bool indices with more dimensions
        # (e.g. 2-D bool tensor) as input parameter in node is invalid
        negative_scores = -1 * torch.ones_like(scores)
        scores = torch.where(cls_inds, negative_scores, scores)
        scores = torch.where(width_inds, negative_scores, scores)
        scores = torch.where(height_inds, negative_scores, scores)
        scores = torch.where(dist_inds, negative_scores, scores)

        if with_centripetal_shift:
            scores[tl_ctx_inds] = -1
            scores[tl_cty_inds] = -1
            scores[br_ctx_inds] = -1
            scores[br_cty_inds] = -1

        scores = scores.view(batch, -1)
        scores, inds = torch.topk(scores, num_dets)
        scores = scores.unsqueeze(2)

        bboxes = bboxes.view(batch, -1, 4)
        bboxes = gather_feat(bboxes, inds)

        clses = tl_clses.contiguous().view(batch, -1, 1)
        clses = gather_feat(clses, inds).float()

        return bboxes, scores, clses

    def onnx_export(self,
                    tl_heats,
                    br_heats,
                    tl_embs,
                    br_embs,
                    tl_offs,
                    br_offs,
                    img_metas,
                    rescale=False,
                    with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            tl_heats (list[Tensor]): Top-left corner heatmaps for each level
                with shape (N, num_classes, H, W).
            br_heats (list[Tensor]): Bottom-right corner heatmaps for each
                level with shape (N, num_classes, H, W).
            tl_embs (list[Tensor]): Top-left corner embeddings for each level
                with shape (N, corner_emb_channels, H, W).
            br_embs (list[Tensor]): Bottom-right corner embeddings for each
                level with shape (N, corner_emb_channels, H, W).
            tl_offs (list[Tensor]): Top-left corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            br_offs (list[Tensor]): Bottom-right corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            tuple[Tensor, Tensor]: First tensor bboxes with shape
            [N, num_det, 5], 5 arrange as (x1, y1, x2, y2, score)
            and second element is class labels of shape [N, num_det].
        """
        assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(
            img_metas) == 1
        result_list = []
        for img_id in range(len(img_metas)):
            result_list.append(
                self._get_bboxes_single(
                    tl_heats[-1][img_id:img_id + 1, :],
                    br_heats[-1][img_id:img_id + 1, :],
                    tl_offs[-1][img_id:img_id + 1, :],
                    br_offs[-1][img_id:img_id + 1, :],
                    img_metas[img_id],
                    tl_emb=tl_embs[-1][img_id:img_id + 1, :],
                    br_emb=br_embs[-1][img_id:img_id + 1, :],
                    rescale=rescale,
                    with_nms=with_nms))

        detections, labels = result_list[0]
        # batch_size 1 here, [1, num_det, 5], [1, num_det]
        return detections.unsqueeze(0), labels.unsqueeze(0)