File size: 39,707 Bytes
51f6859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, Linear, build_activation_layer
from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding
from mmcv.runner import force_fp32

from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh,
                        build_assigner, build_sampler, multi_apply,
                        reduce_mean)
from mmdet.models.utils import build_transformer
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead


@HEADS.register_module()
class DETRHead(AnchorFreeHead):
    """Implements the DETR transformer head.

    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.

    Args:
        num_classes (int): Number of categories excluding the background.
        in_channels (int): Number of channels in the input feature map.
        num_query (int): Number of query in Transformer.
        num_reg_fcs (int, optional): Number of fully-connected layers used in
            `FFN`, which is then used for the regression head. Default 2.
        transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer.
            Default: None.
        sync_cls_avg_factor (bool): Whether to sync the avg_factor of
            all ranks. Default to False.
        positional_encoding (obj:`mmcv.ConfigDict`|dict):
            Config for position encoding.
        loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the
            classification loss. Default `CrossEntropyLoss`.
        loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the
            regression loss. Default `L1Loss`.
        loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the
            regression iou loss. Default `GIoULoss`.
        tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of
            transformer head.
        test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of
            transformer head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    _version = 2

    def __init__(self,
                 num_classes,
                 in_channels,
                 num_query=100,
                 num_reg_fcs=2,
                 transformer=None,
                 sync_cls_avg_factor=False,
                 positional_encoding=dict(
                     type='SinePositionalEncoding',
                     num_feats=128,
                     normalize=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     bg_cls_weight=0.1,
                     use_sigmoid=False,
                     loss_weight=1.0,
                     class_weight=1.0),
                 loss_bbox=dict(type='L1Loss', loss_weight=5.0),
                 loss_iou=dict(type='GIoULoss', loss_weight=2.0),
                 train_cfg=dict(
                     assigner=dict(
                         type='HungarianAssigner',
                         cls_cost=dict(type='ClassificationCost', weight=1.),
                         reg_cost=dict(type='BBoxL1Cost', weight=5.0),
                         iou_cost=dict(
                             type='IoUCost', iou_mode='giou', weight=2.0))),
                 test_cfg=dict(max_per_img=100),
                 init_cfg=None,
                 **kwargs):
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since it brings inconvenience when the initialization of
        # `AnchorFreeHead` is called.
        super(AnchorFreeHead, self).__init__(init_cfg)
        self.bg_cls_weight = 0
        self.sync_cls_avg_factor = sync_cls_avg_factor
        class_weight = loss_cls.get('class_weight', None)
        if class_weight is not None and (self.__class__ is DETRHead):
            assert isinstance(class_weight, float), 'Expected ' \
                'class_weight to have type float. Found ' \
                f'{type(class_weight)}.'
            # NOTE following the official DETR rep0, bg_cls_weight means
            # relative classification weight of the no-object class.
            bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
            assert isinstance(bg_cls_weight, float), 'Expected ' \
                'bg_cls_weight to have type float. Found ' \
                f'{type(bg_cls_weight)}.'
            class_weight = torch.ones(num_classes + 1) * class_weight
            # set background class as the last indice
            class_weight[num_classes] = bg_cls_weight
            loss_cls.update({'class_weight': class_weight})
            if 'bg_cls_weight' in loss_cls:
                loss_cls.pop('bg_cls_weight')
            self.bg_cls_weight = bg_cls_weight

        if train_cfg:
            assert 'assigner' in train_cfg, 'assigner should be provided '\
                'when train_cfg is set.'
            assigner = train_cfg['assigner']
            assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \
                'The classification weight for loss and matcher should be' \
                'exactly the same.'
            assert loss_bbox['loss_weight'] == assigner['reg_cost'][
                'weight'], 'The regression L1 weight for loss and matcher ' \
                'should be exactly the same.'
            assert loss_iou['loss_weight'] == assigner['iou_cost']['weight'], \
                'The regression iou weight for loss and matcher should be' \
                'exactly the same.'
            self.assigner = build_assigner(assigner)
            # DETR sampling=False, so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)
        self.num_query = num_query
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.num_reg_fcs = num_reg_fcs
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.fp16_enabled = False
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_iou = build_loss(loss_iou)

        if self.loss_cls.use_sigmoid:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1
        self.act_cfg = transformer.get('act_cfg',
                                       dict(type='ReLU', inplace=True))
        self.activate = build_activation_layer(self.act_cfg)
        self.positional_encoding = build_positional_encoding(
            positional_encoding)
        self.transformer = build_transformer(transformer)
        self.embed_dims = self.transformer.embed_dims
        assert 'num_feats' in positional_encoding
        num_feats = positional_encoding['num_feats']
        assert num_feats * 2 == self.embed_dims, 'embed_dims should' \
            f' be exactly 2 times of num_feats. Found {self.embed_dims}' \
            f' and {num_feats}.'
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the transformer head."""
        self.input_proj = Conv2d(
            self.in_channels, self.embed_dims, kernel_size=1)
        self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        self.reg_ffn = FFN(
            self.embed_dims,
            self.embed_dims,
            self.num_reg_fcs,
            self.act_cfg,
            dropout=0.0,
            add_residual=False)
        self.fc_reg = Linear(self.embed_dims, 4)
        self.query_embedding = nn.Embedding(self.num_query, self.embed_dims)

    def init_weights(self):
        """Initialize weights of the transformer head."""
        # The initialization for transformer is important
        self.transformer.init_weights()

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        """load checkpoints."""
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since `AnchorFreeHead._load_from_state_dict` should not be
        # called here. Invoking the default `Module._load_from_state_dict`
        # is enough.

        # Names of some parameters in has been changed.
        version = local_metadata.get('version', None)
        if (version is None or version < 2) and self.__class__ is DETRHead:
            convert_dict = {
                '.self_attn.': '.attentions.0.',
                '.ffn.': '.ffns.0.',
                '.multihead_attn.': '.attentions.1.',
                '.decoder.norm.': '.decoder.post_norm.'
            }
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                for ori_key, convert_key in convert_dict.items():
                    if ori_key in k:
                        convert_key = k.replace(ori_key, convert_key)
                        state_dict[convert_key] = state_dict[k]
                        del state_dict[k]

        super(AnchorFreeHead,
              self)._load_from_state_dict(state_dict, prefix, local_metadata,
                                          strict, missing_keys,
                                          unexpected_keys, error_msgs)

    def forward(self, feats, img_metas):
        """Forward function.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.

                - all_cls_scores_list (list[Tensor]): Classification scores \
                    for each scale level. Each is a 4D-tensor with shape \
                    [nb_dec, bs, num_query, cls_out_channels]. Note \
                    `cls_out_channels` should includes background.
                - all_bbox_preds_list (list[Tensor]): Sigmoid regression \
                    outputs for each scale level. Each is a 4D-tensor with \
                    normalized coordinate format (cx, cy, w, h) and shape \
                    [nb_dec, bs, num_query, 4].
        """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single, feats, img_metas_list)

    def forward_single(self, x, img_metas):
        """"Forward function for a single feature level.

        Args:
            x (Tensor): Input feature from backbone's single stage, shape
                [bs, c, h, w].
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format (cx, cy, w, h).
                Shape [nb_dec, bs, num_query, 4].
        """
        # construct binary masks which used for the transformer.
        # NOTE following the official DETR repo, non-zero values representing
        # ignored positions, while zero values means valid positions.
        batch_size = x.size(0)
        input_img_h, input_img_w = img_metas[0]['batch_input_shape']
        masks = x.new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w, _ = img_metas[img_id]['img_shape']
            masks[img_id, :img_h, :img_w] = 0

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(
            masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1)
        # position encoding
        pos_embed = self.positional_encoding(masks)  # [bs, embed_dim, h, w]
        # outs_dec: [nb_dec, bs, num_query, embed_dim]
        outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()
        return all_cls_scores, all_bbox_preds

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def loss(self,
             all_cls_scores_list,
             all_bbox_preds_list,
             gt_bboxes_list,
             gt_labels_list,
             img_metas,
             gt_bboxes_ignore=None):
        """"Loss function.

        Only outputs from the last feature level are used for computing
        losses by default.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
                which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        # NOTE defaultly only the outputs from the last feature scale is used.
        all_cls_scores = all_cls_scores_list[-1]
        all_bbox_preds = all_bbox_preds_list[-1]
        assert gt_bboxes_ignore is None, \
            'Only supports for gt_bboxes_ignore setting to None.'

        num_dec_layers = len(all_cls_scores)
        all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
        all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
        all_gt_bboxes_ignore_list = [
            gt_bboxes_ignore for _ in range(num_dec_layers)
        ]
        img_metas_list = [img_metas for _ in range(num_dec_layers)]

        losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_single, all_cls_scores, all_bbox_preds,
            all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
            all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
                                                       losses_bbox[:-1],
                                                       losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

    def loss_single(self,
                    cls_scores,
                    bbox_preds,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
            cls_scores (Tensor): Box score logits from a single decoder layer
                for all images. Shape [bs, num_query, cls_out_channels].
            bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
                for all images, with normalized coordinate (cx, cy, w, h) and
                shape [bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components for outputs from
                a single decoder layer.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           gt_bboxes_list, gt_labels_list,
                                           img_metas, gt_bboxes_ignore_list)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                cls_scores.new_tensor([cls_avg_factor]))
        cls_avg_factor = max(cls_avg_factor, 1)

        loss_cls = self.loss_cls(
            cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        factors = []
        for img_meta, bbox_pred in zip(img_metas, bbox_preds):
            img_h, img_w, _ = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors, 0)

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        bbox_preds = bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(
            bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)

        # regression L1 loss
        loss_bbox = self.loss_bbox(
            bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

    def get_targets(self,
                    cls_scores_list,
                    bbox_preds_list,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Compute regression and classification targets for a batch image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_scores_list (list[Tensor]): Box score logits from a single
                decoder layer for each image with shape [num_query,
                cls_out_channels].
            bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx, cy, w, h) and shape [num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels for all images.
                - label_weights_list (list[Tensor]): Label weights for all \
                    images.
                - bbox_targets_list (list[Tensor]): BBox targets for all \
                    images.
                - bbox_weights_list (list[Tensor]): BBox weights for all \
                    images.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
        """
        assert gt_bboxes_ignore_list is None, \
            'Only supports for gt_bboxes_ignore setting to None.'
        num_imgs = len(cls_scores_list)
        gt_bboxes_ignore_list = [
            gt_bboxes_ignore_list for _ in range(num_imgs)
        ]

        (labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply(
             self._get_target_single, cls_scores_list, bbox_preds_list,
             gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def _get_target_single(self,
                           cls_score,
                           bbox_pred,
                           gt_bboxes,
                           gt_labels,
                           img_meta,
                           gt_bboxes_ignore=None):
        """"Compute regression and classification targets for one image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_score (Tensor): Box score logits from a single decoder layer
                for one image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
                for one image, with normalized coordinate (cx, cy, w, h) and
                shape [num_query, 4].
            gt_bboxes (Tensor): Ground truth bboxes for one image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth class indices for one image
                with shape (num_gts, ).
            img_meta (dict): Meta information for one image.
            gt_bboxes_ignore (Tensor, optional): Bounding boxes
                which can be ignored. Default None.

        Returns:
            tuple[Tensor]: a tuple containing the following for one image.

                - labels (Tensor): Labels of each image.
                - label_weights (Tensor]): Label weights of each image.
                - bbox_targets (Tensor): BBox targets of each image.
                - bbox_weights (Tensor): BBox weights of each image.
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
        """

        num_bboxes = bbox_pred.size(0)
        # assigner and sampler
        assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes,
                                             gt_labels, img_meta,
                                             gt_bboxes_ignore)
        sampling_result = self.sampler.sample(assign_result, bbox_pred,
                                              gt_bboxes)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label targets
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        bbox_targets = torch.zeros_like(bbox_pred)
        bbox_weights = torch.zeros_like(bbox_pred)
        bbox_weights[pos_inds] = 1.0
        img_h, img_w, _ = img_meta['img_shape']

        # DETR regress the relative position of boxes (cxcywh) in the image.
        # Thus the learning target should be normalized by the image size, also
        # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
        factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor
        pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
        bbox_targets[pos_inds] = pos_gt_bboxes_targets
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    # over-write because img_metas are needed as inputs for bbox_head.
    def forward_train(self,
                      x,
                      img_metas,
                      gt_bboxes,
                      gt_labels=None,
                      gt_bboxes_ignore=None,
                      proposal_cfg=None,
                      **kwargs):
        """Forward function for training mode.

        Args:
            x (list[Tensor]): Features from backbone.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            proposal_cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert proposal_cfg is None, '"proposal_cfg" must be None'
        outs = self(x, img_metas)
        if gt_labels is None:
            loss_inputs = outs + (gt_bboxes, img_metas)
        else:
            loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
        losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        return losses

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def get_bboxes(self,
                   all_cls_scores_list,
                   all_bbox_preds_list,
                   img_metas,
                   rescale=False):
        """Transform network outputs for a batch into bbox predictions.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If True, return boxes in original
                image space. Default False.

        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \
                The first item is an (n, 5) tensor, where the first 4 columns \
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the \
                5-th column is a score between 0 and 1. The second item is a \
                (n,) tensor where each item is the predicted class label of \
                the corresponding box.
        """
        # NOTE defaultly only using outputs from the last feature level,
        # and only the outputs from the last decoder layer is used.
        cls_scores = all_cls_scores_list[-1][-1]
        bbox_preds = all_bbox_preds_list[-1][-1]

        result_list = []
        for img_id in range(len(img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            proposals = self._get_bboxes_single(cls_score, bbox_pred,
                                                img_shape, scale_factor,
                                                rescale)
            result_list.append(proposals)

        return result_list

    def _get_bboxes_single(self,
                           cls_score,
                           bbox_pred,
                           img_shape,
                           scale_factor,
                           rescale=False):
        """Transform outputs from the last decoder layer into bbox predictions
        for each image.

        Args:
            cls_score (Tensor): Box score logits from the last decoder layer
                for each image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
                for each image, with coordinate format (cx, cy, w, h) and
                shape [num_query, 4].
            img_shape (tuple[int]): Shape of input image, (height, width, 3).
            scale_factor (ndarray, optional): Scale factor of the image arange
                as (w_scale, h_scale, w_scale, h_scale).
            rescale (bool, optional): If True, return boxes in original image
                space. Default False.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels.

                - det_bboxes: Predicted bboxes with shape [num_query, 5], \
                    where the first 4 columns are bounding box positions \
                    (tl_x, tl_y, br_x, br_y) and the 5-th column are scores \
                    between 0 and 1.
                - det_labels: Predicted labels of the corresponding box with \
                    shape [num_query].
        """
        assert len(cls_score) == len(bbox_pred)
        max_per_img = self.test_cfg.get('max_per_img', self.num_query)
        # exclude background
        if self.loss_cls.use_sigmoid:
            cls_score = cls_score.sigmoid()
            scores, indexes = cls_score.view(-1).topk(max_per_img)
            det_labels = indexes % self.num_classes
            bbox_index = indexes // self.num_classes
            bbox_pred = bbox_pred[bbox_index]
        else:
            scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1)
            scores, bbox_index = scores.topk(max_per_img)
            bbox_pred = bbox_pred[bbox_index]
            det_labels = det_labels[bbox_index]

        det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
        det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
        det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
        det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
        det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
        if rescale:
            det_bboxes /= det_bboxes.new_tensor(scale_factor)
        det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1)

        return det_bboxes, det_labels

    def simple_test_bboxes(self, feats, img_metas, rescale=False):
        """Test det bboxes without test-time augmentation.

        Args:
            feats (tuple[torch.Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            img_metas (list[dict]): List of image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is ``bboxes`` with shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
                The shape of the second tensor in the tuple is ``labels``
                with shape (n,)
        """
        # forward of this head requires img_metas
        outs = self.forward(feats, img_metas)
        results_list = self.get_bboxes(*outs, img_metas, rescale=rescale)
        return results_list

    def forward_onnx(self, feats, img_metas):
        """Forward function for exporting to ONNX.

        Over-write `forward` because: `masks` is directly created with
        zero (valid position tag) and has the same spatial size as `x`.
        Thus the construction of `masks` is different from that in `forward`.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.

                - all_cls_scores_list (list[Tensor]): Classification scores \
                    for each scale level. Each is a 4D-tensor with shape \
                    [nb_dec, bs, num_query, cls_out_channels]. Note \
                    `cls_out_channels` should includes background.
                - all_bbox_preds_list (list[Tensor]): Sigmoid regression \
                    outputs for each scale level. Each is a 4D-tensor with \
                    normalized coordinate format (cx, cy, w, h) and shape \
                    [nb_dec, bs, num_query, 4].
        """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single_onnx, feats, img_metas_list)

    def forward_single_onnx(self, x, img_metas):
        """"Forward function for a single feature level with ONNX exportation.

        Args:
            x (Tensor): Input feature from backbone's single stage, shape
                [bs, c, h, w].
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format (cx, cy, w, h).
                Shape [nb_dec, bs, num_query, 4].
        """
        # Note `img_shape` is not dynamically traceable to ONNX,
        # since the related augmentation was done with numpy under
        # CPU. Thus `masks` is directly created with zeros (valid tag)
        # and the same spatial shape as `x`.
        # The difference between torch and exported ONNX model may be
        # ignored, since the same performance is achieved (e.g.
        # 40.1 vs 40.1 for DETR)
        batch_size = x.size(0)
        h, w = x.size()[-2:]
        masks = x.new_zeros((batch_size, h, w))  # [B,h,w]

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(
            masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1)
        pos_embed = self.positional_encoding(masks)
        outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()
        return all_cls_scores, all_bbox_preds

    def onnx_export(self, all_cls_scores_list, all_bbox_preds_list, img_metas):
        """Transform network outputs into bbox predictions, with ONNX
        exportation.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            img_metas (list[dict]): Meta information of each image.

        Returns:
            tuple[Tensor, Tensor]: dets of shape [N, num_det, 5]
                and class labels of shape [N, num_det].
        """
        assert len(img_metas) == 1, \
            'Only support one input image while in exporting to ONNX'

        cls_scores = all_cls_scores_list[-1][-1]
        bbox_preds = all_bbox_preds_list[-1][-1]

        # Note `img_shape` is not dynamically traceable to ONNX,
        # here `img_shape_for_onnx` (padded shape of image tensor)
        # is used.
        img_shape = img_metas[0]['img_shape_for_onnx']
        max_per_img = self.test_cfg.get('max_per_img', self.num_query)
        batch_size = cls_scores.size(0)
        # `batch_index_offset` is used for the gather of concatenated tensor
        batch_index_offset = torch.arange(batch_size).to(
            cls_scores.device) * max_per_img
        batch_index_offset = batch_index_offset.unsqueeze(1).expand(
            batch_size, max_per_img)

        # supports dynamical batch inference
        if self.loss_cls.use_sigmoid:
            cls_scores = cls_scores.sigmoid()
            scores, indexes = cls_scores.view(batch_size, -1).topk(
                max_per_img, dim=1)
            det_labels = indexes % self.num_classes
            bbox_index = indexes // self.num_classes
            bbox_index = (bbox_index + batch_index_offset).view(-1)
            bbox_preds = bbox_preds.view(-1, 4)[bbox_index]
            bbox_preds = bbox_preds.view(batch_size, -1, 4)
        else:
            scores, det_labels = F.softmax(
                cls_scores, dim=-1)[..., :-1].max(-1)
            scores, bbox_index = scores.topk(max_per_img, dim=1)
            bbox_index = (bbox_index + batch_index_offset).view(-1)
            bbox_preds = bbox_preds.view(-1, 4)[bbox_index]
            det_labels = det_labels.view(-1)[bbox_index]
            bbox_preds = bbox_preds.view(batch_size, -1, 4)
            det_labels = det_labels.view(batch_size, -1)

        det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds)
        # use `img_shape_tensor` for dynamically exporting to ONNX
        img_shape_tensor = img_shape.flip(0).repeat(2)  # [w,h,w,h]
        img_shape_tensor = img_shape_tensor.unsqueeze(0).unsqueeze(0).expand(
            batch_size, det_bboxes.size(1), 4)
        det_bboxes = det_bboxes * img_shape_tensor
        # dynamically clip bboxes
        x1, y1, x2, y2 = det_bboxes.split((1, 1, 1, 1), dim=-1)
        from mmdet.core.export import dynamic_clip_for_onnx
        x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, img_shape)
        det_bboxes = torch.cat([x1, y1, x2, y2], dim=-1)
        det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1)

        return det_bboxes, det_labels